Review

MANGANESE CARBONYL AND ORGANOMETALLIC COMPOUNDS: ANALYSIS AND CLASSIFICATION OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

CLIVE E. HOLLOWAY, Department of Chemistry, York University, 4700 Keele St., Downsview, Ontario, M3J 1P3, Canada

MILAN MELNIK, Department of Inorganic Chemistry, Slovak Technical University, CS 812 37, Bratislava, Czechoslovakia (Received March 7th, 1990) CONTENTS

0. ABBREVIATIONS

- 1. INTRODUCTION
- 2. MANGANESE CARBONYL COMPOUNDS
 - (A) Mononuclear compounds.
 - 1 Coordination numbers four and five.
 - 2 Coordination number six.
 - 3 Compounds with H-borate ligands.
 - (B) Binuclear carbonyl compounds.
 - (C) Tri-, tetra-, and hexanuclear carbonyl compounds.
 - (D) Heteronuclear carbonyl compounds.
 - 1 Hetero-binuclear derivatives.
 - 2 Hetero-trinuclear derivatives.
 - 3 Hetero-polynuclear compounds.
- 3. MANGANESE ORGANOMETALLIC COMPOUNDS
 - (A) Mononuclear Compounds.
 - 1 Compounds with unidentate carbon ligands.
 - 2 Compounds with bi-, tri- or tetradentate carbon ligands.
 - 3 Compounds with penta- or hexadentate carbon ligands.
 - 4 Compounds with two multidentate ring ligands.
 - (B) Binuclear organometallic compounds.
 - (C) Tri- and tetranuclear organometallic compounds.
 - (D) Hetero-binuclear organometallic compounds.
 - (E) Hetero-oligonuclear organometallic compounds.
- 4. SUMMARY
- 5. ACKNOWLEDGEMENTS
- 6. REFERENCES

0. ABBREVIATIONS

aac	(allylamino)carbene
ac	acetate
9090	acetulacetonato
act	3-acetyl-4 5-dibydrofuran-2-yl
aci	anotonitrilo
ach	2-acetylphonyl
acp	acetylphenyl
acpr	acetyipyriotyi
adm	
bepr	bis (cymantrenyipnenyi) fulvene
bcpp	bis (cymantrenylphenyl) cyclopentene
bdmp	1-tert-butyl-3,4-dimethylphosphole
bhp	(2-benzylidenehydrazonomethyl)phenyl
bpy	2,2'-bipyridine
bu-iae	1-(tert-butylimino)-2-(tert-butylamine)ethane
с	cubic
cbdcp	cyclobuta[1,3-a:3,4-a']dicyclopentane
ср	cvclopentadienvl
cp*	methylcyclopentadienyl
en-ae	acetylcyclopentadienyl
cn-hz	benzovlevelopentadienvl
m-df	$1_{\pi}\{\alpha_{-}(N, N) - dimethylamino) + thyl - 2 - formylcyclopentadienyl$
op-mo	-methylevelopentadienyleanhovylate
cp-mc	$\{f_{n}, f_{n}\} \in \mathbb{R}$
cp-un	(0,7-(0,0,0-tetrametriyicyclonexene)cyclopentadienyi
4	-propanoic acia
dac	1,1-cipnenyi-1-arsa-cyclopentane
dam	dimethylalazomalonate
dca	dicyclonexylallenylidene
dep	1-diethylphosphonato-2-phenylethylene
dik	see original literature, methylene linkage to metal
dmap	1,3-bis(dimethylarsino)propane
dmb	2-(dimethylaminomethyl)phenyl
dmp	3,4-dimethylphospholyl
dmpe	1,2-bis(dimethylphosphino)ethane
dmpz	3,5-dimethyl-1-pyrazole
dop	1-syn-(1',2',-dihydro-2'-oxo-1'-oxa-azulen-3'-yl)-
-	-n ⁵ -cyclopentadienyl
dopc	2,2'-diphenyl-1-oxa-2-phospha-cyclobutane
doph	2.2'-diphenyl-1-oxa-2-phospha-cycloheptane
dono	2.2'-diphenyl-1-oxa-2-phospha-cyclohexa-5-one
dnac	dinhenvlacetate
dne	1 1'-dinhenvl-1-nhospha-ovolohutane
dpb	1 1 ¹ -dinhonyl-1-nhospha-ayalobantana
dpob	1,1'-diphenyl-1-phospha-cycloheptane
dpen	1, 1 - upneny -1 - phospha-cyclonexane 1, 9 - big (dimethylonging) = $2, 2, 4$ (-tetrofly one overlabutane
upe	1, 2-DIS (unnethylarshio) - 5, 5, 4, 4-tetral horocyclobulane
epp	2-etnyi-1-phenyiborole
Iylars	1,2-bis(dimethylarsino)-3,3,4,4-tetrafluorocyclobutane
hdd	2,4-hexadien-2,5-diyl
m	monoclinic
mbt	dimercaptobenzothiazolate
mdpa	bis(diphenylarsino)methane
mdpc	3-methyl-1,1-diphenyl-1-phospha-cyclopentane
mdpp	bis(diphenylphosphino)methane
mes	mesityl
min	2-methylindolyl
mopp	2-(1',2',-dimethyloxopropenyl)phenyldiphenylphosphine
mpc	3.4-dimethylphospha-cymantrene
msp	(methylsulphidomethyl)phenyl
mtpc	3.3-dimethyl-4-thia-3-phospha-cyclopentadiene-
	-1 2-dimethyl ester
	amouty a obtain

1-np	1-naphthyl
obdp	(o-3-oxobutylphenyl)diphenylphosphine
or	orthorhombic
pcr	picrate
pfp	2-(N-phenylformimidoyl)phenyl
phen	1,10-phenanthroline
pmte	N-isopropyliden-S-methyldithiocarbazinate
pope	2,2-diphenyl-1-oxa-2-phospha-cyclohexane
ppn	bis(triphenylphosphine)nitrogen(+)
rh	rhombohedral
tg	tetragonal
thf	tetrahydrofuran
tmeda	N,N,N',N'-tetramethylethylenedianime
tmi	tetramethyl-α-diimine
tmdt	2,4,7,9-tetramethyl-1,3,7,9-decatetraene
tmpo	2,2,6,6-tetramethylpiperidinyl-1-oxo
top	2-(bis-p-tolylphosphino)-5-methylphenyl
topc	2,2,5,5-tetramethyl-1-oxa-2-phospha-cyclohexane
tpbp	2,2,4,4-tetraphenyl-1-H-benzodiphospherinyl
tpe	2-thiophenoxyethoxy
tpp	$\alpha, \beta, \gamma, \delta$ -tetraphenylporphinate
tr	triclinic
trg	trigonal

1. INTRODUCTION

Manganese, one of the more abundant of the heavier metallic elements, appears to be essential to life in trace amounts, and is known to be involved in enzymatic reactions including the formation of glucosamine-serine linkages, the synthesis of cartilage mucopolysaccharides, the action of pyruvate carboxylase and the utilization of glucose [1].

The element is typified by multiple oxidation states, and its compounds have had wide use in catalysis. Organometallic compounds have been summarized in annual reports [2], and coordination compounds have been reviewed [3]. The purpose of this review is to draw together and correlate the known structural data for all the various manganese carbonyl and organometallic compounds published up to 1986 (volume 105 of Chemical Abstracts).

The structures have been classified according to the coordination number of the manganese, subdivided into monomers, oligomers and polymers. The compounds are listed in order of increasing coordination number, increasing complexity of the coordination sphere and increasing atomic number of the principal ligating atom. Where possible the estimated standard deviations of structural parameters from the mean value are given in parenthesis.

2. MANGANESE CARBONYL COMPOUNDS

(A) Mononuclear Compounds

1. Coordination numbers four and five.

Four is the lowest coordination number found for mononuclear manganese carbonyl compounds, there being only one example $\{(PPh_3)_2N\} [Mn(CO)_2(NO)_2] [5]$ This red-orange product has tetrahedral geometry around the Mn(-1) atom, with

Ð	
μv	
and	
four	
ber	
coordination	
with	
compounds	
carbonyl	
r manganese	
a fo	
dat	
Structural	
Table 1	

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°]	Chromo- phore	[md]	L _{iner} -M-L _{iner} L _{iurt} -M-L _{iner} L _{iurt} -M-L _{iner} [°]	Ref
{(PPh ₃) ₂ N}[Mn ⁻¹ (CO) ₂ (NO) ₂]	8	P2,/a	4	2189(5) 919.4(3) 1749.5(3)	96.25(2)	MnN ₂ C ₂	N ^b 171.9(6,12) C 174.8(6,3)	109.5(2,2.2)	ß
[Mn ⁻¹ (CO) ₅][fac-Mn ¹ (CO) ₃ (NH ₃) ₃]	or	Pnma	4	1245.1 953.4 1227		MnC ₆ MnN ₃ C ₃	C 176.2(8,10) C 179.2(11,10) N 209.6(7,1)	119.9(3,5.3)90.1(4,2.9)178.9(4)85.9(2,7)C	g
Mn ¹ -(CO) _a] _a [Ni(phen) _a] ^d ,e	۲.	- 14	7	1361.8(5) 1432.5(5) 1239.9(8)	102.16(4) 113.22(4) 98.46(3)	MnC. MnC.	C 180.4(11,14) C 181.7(11,15) C 179.1(10,19) C 182.3(11,8)	120(4,5 90(4,1.5) 178.2(3) 120(4,3.4) 90(4,1.6) 178.6(4)	2
Mn(CO)₄(NO) ^f	E	C2/c	4	1172(3) 674(2) 965(2)	107.8(1)	MnC ₄ N	N 179.7(13) C 185.1(8)(2x) C 188.6(8)(2x)	120(3,1.1) 90(4,2/0) 179.6(7)	8
(Pha)[Mn ⁻¹ (CO),Pha,] ^g	8	P2,/c	4	1073.5(3) 1741.2(4) 2084.7(8)	99.16(2)	MnC4P	C 179.5(7,6) C _{ax} 179.7(6) P _{ax} 224.8(2)	120(3,6.8) 90(3,5.2) 172(2)	0
[Mn ¹ (C0) _a (NSiMe _a {P(OPh)- ^d .[N(SiMe _a) ₂ }]	E	P2,/c	œ	2122.3(4) 1736.3(4) 1785.9(4)	98.63(2)	MnC ₃ N ₂ MnC ₃ N ₂	C 178.2(9,5) N 202.7(5,14) C 174.8(8) C 1.766(9,15) N not given C 177.5(8)	я.	10

(3)
cont.
1,
Table

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore		M-L [pu]	Lund -M-Lund Lund -M-Lund Lunx -M-Lunx [0]	Ref
Mn"(CO) _a (tmpo)	E	P2,/c	4	628.5(2) 1480.6(7) 1484(6)	9029(31)	MnC ₃ NO	UZOU	181.5(4) 198.1(3) 183.9(3) 178.1(4,6)	1	H
Mn(CO) ₂ (NO)(PPh ₃) ₂	or	Pbca	œ	1815(8) 1707(8) 2186(11)		MnC ₂ P ₂ N	UZd	177(2,2) 173(1) 227.9(5,1)	120(7,1.3) 90(5,4.5) 170.2(2)	12

The mean value for chemically identical angle or distance. The first number in parenthesis is the e.s.d. and the second is the maximum deviation from the mean. The chemical identity of coordinated atom or ligand. The value of C-Mn-C angle; C-Mn-N = 92.5(3,1.7) and 177.8(3,1.2)°; N-Mn-N = 85.9(2,7)°. There are two crystallographically independent molecules; at 150(2)K. at 150(2)K. at 150(2)K. at 150(2)K. The C_{oor} = 84.4(4)°; N_{od}-Mn-N_{od} = 74.4(2)°; C_{oor}-Mn-C_{oor} = 88.9(4,3)°. The C_{oor}-Mn-C_{oor} = 88.9(4,3)°. The C_{oor}-Mn-O = 105.1(1) and 135.4(2,2)°; C-Mn-N = 112.1(2) and 148.3(2)°.

Mn-C bond distances of 174.5 and 175.0(6) pm, and Mn-N bond distances of 170.7(5) and 173.0(6) pm (Table 1).

Crystallographic and structural data for five coordinate manganese carbonyl compounds are given in Table 1. There are two types of geometry, trigonal bipyramid and square pyramid. Of the latter there is only one example, $Mn(CO)_3$ - $(NSiMe_3)_2\{P(OPh) [N(SiMe_3)_2)\}$ [10], where the central MnC_3N_2 skeleton corresponds to a distorted square-pyramidal environment. In all the other examples the trigonal bipyramidal geometry occurs, for which the crystal structure of deep red $(Ph_4P) [Mn(CO)_4PPh_3]$ [9] is shown in Figure 1 as a representative example. The CO and PPh₃ ligands are in axial sites (Mn-C = 179.7(6) pm and Mn-P = 224.8(2) pm, and the remaining three CO ligands occupy equatorial coordination sites (Mn-C = 180.1, 178.9 and 179.6(6) pm). Except for one example $Mn(CO)_3(tmpo)$ [11], only unidentate ligands are involved in the five coordination of manganese listed in Table 1.

The oxidation states found for the manganese occur in the order zero <-1 <+1. Two crystallographically independent molecules, differing by degree of distortion, have been found for $[Mn(CO)_5]^-$ [7] and $Mn(CO)_3$ N[SiMe₃)₂ {P(OPh)-(N(SiMe₃))₂ [10] and they are examples of distortion isomerism [4].

2. Coordination number six

The overwhelming majority of manganese coordination compounds are six coordinate and the carbonyl derivatives follow the same trend. From the data in Table 2 it can be seen that there are no examples of the regular (O_h) octahedron, however, the three principal types of distortion for the octahedron, tetragonal, rhombic and trigonal are all found. The crystal structure of colourless $Mn(CO)_2$ $[OC_8H_4OP(O)]$ [8] is shown in Figure 2 as a representative example. The metal atom has four equatorial carbonyl ligands (Mn-C = 186.5(7.9)pm), one axial carbonyl (Mn-C = 186.7(6)pm) and an axial 1,3,2-benzodioxaphosphole-2-oxide (Mn-P = 230.7(2)pm).

The data in Table 2 show that the predominant oxidation state of the manganese is +1. There are no examples with all six ligands equivalent. There are several occurrences of isomerism, for example colourless $Mn(CO)_2[P(OMe)_2-Ph]_4](PF_6)$ [26] was found in cis and trans isomeric forms. There are another three examples: α - and β -HMn(CO)₅ [13, 14]; fac- and mer-Mn(CO)_3Br[P(OMe)_2-Ph]_2 [35]; cis and trans [Mn(CO)_2(phen){P(OMe)_3}] (C10_4) [41]; all of which differ mostly in degree of distortion. Two crystallographically independent molecules, differing in degree of distortion, have been found for mer-Mn(CO)_3-Br[P(OMe)_2-Br[P(OMe)_2Ph]_2 [35] and Mn(CO)_3C1[P(Ph)_2(C_5H_7N_2)] [38] and are further examples of distortion isomerism [4]. The fac- and mer-Mn(CO)_3Br[P(OMe)_2Ph]_2 derivatives mentioned above are unique examples of this phenomenon.

six ^a
number
coordination
đ
with
compounds
carbonyl
manganese
mononuclear
5
data fi
Structural
Table 2

Compound	Crystal Class	Space Group	Z	a[pm] b[pm] c[pm]	a[°] B[°] \$ [°]	Chromo- phore		M-L [pm]	OC-M-CO cis-[°] trans-[°]	Ref
a-HMn¹ (CO)s ^c	8	12/a	œ	1218(2) 635(1) 1920(3)	93.3(5)	MnC ₆ H	ບິ≖	183.6(9,16) not located	93(4,4.4) 166.4(4,1)	13
ß-HMn¹ (CO)₅"	E	C2/c	80	1216(3) 628(2) 1934(4)	91.2(5)	MnC _s H	сH	184.7(17,23) not located	93(7, 4.8) 166.5 $(7, 2.2)$	14
						MnC _s H ^d	нс	184.7(13,14) 160.1(16)	93.1(5,5.4) ^e 165.7(6,1.7)	
Mn ^t (CO) _s (F ₃ CCOO)	E	P2,/n	4	692.7(2) 1345.4(4) 1160.3(3)	92.11(2)	MnC _s 0	00	187.4(5,59) 203.1(2)	90.7(2,2.4) ^f 176.9(2,1.5)	15
Mn¹ (CO)₅Cl	or	Pnma	4	1154(2) 1152(2) 595(1)		MnC ₆ Cl	000	189.3(6,1) 180.7(9) ,236.7(4)	90.8(3,1.8) [£] 176.4(3)	16
Mn(CO) _s { <u>e</u> -HOC _a H₄O) _s P(O)}	tg	I4, '8	16	2514.5(10)		MnC ₅ P	D d	185.3(6,17) 229.7(2)	91.2(3,4.9) ^ħ 1 174.8(3,1)	17
Mn(CO) _s {OC _s H₄OP(O)}	ţ	Id	2	675.3(2) 881.8(3) 1200.4(4)	106.79(2) 105.37(2) 98.82(2)	MnC ₅ P	Сď	186.5(7,9) 230.7(2)	91.4(3,2.4) ^{h2} 174(3,3)	18
Mn'(CO) _a (CNCH _a) _a Br	tr	14	5	890(2) 1090.7(3) 615.5(2)	97.93(1) 108.45(1) 81.86(1)	MnC _o Br	Br. OC	183.5(12,20) 197.1(12,21) 178.9(11) 253.7(2)	90.8(4) ⁱ 1	19
Mn'(CO) ₃ (CNPh) ₂ Br	E	P2,/n	4	1803 593 168.3	107.33	MnC _s Br	Br OC	174(6,3) 193(4,1) 252.7(8)	92(2,3) ¹²	20

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] ¥[°]	Chromo- phore	-	[mq]	OC-M-CO cis-[°] trans-[°]	Ref
[Mn ¹ (CO) ₂ (CNPh)(CNBu)(phen)]. .ClO ₄	8	P2,/n	*	1534.3(3) 1291(3) 1451.1(3)	105.51(2)	MnC ₄ N ₂	N BUNC PhNC	205.5(5,19) 178.7(8) 186.2(6) * 196.4(6) * 182.3(7)	¹ ر3)	21
[Mn¹(CO)ª(CNBu)phen)]CIO4	ħ	- Id	3	1824.6(3) 1355.4(2) 945.2(2)	111.53(2) 118.94(2) 118.63(2)	MnC ₄ N ₂	BuNC.	206.4(4,4) 181.3(7,7) * 184.6(6) * 196.9(6)	89.7(3,1.9) ^j ª	22
cis-Mn¹(CO)₄{(PPh₂O)₂H}	or	P2, 2, 2, 2,	Ŧ	976 1372 1946		MnC_P_	P OC	234.9(1,7) 182.5(5,6) * 185.6(5,7)	928(5) ^k '	23
Mn(CO)4(C32H38NO2P2) ^{k2}	e	C2/c	30	4020.7(20) 1290.1(5) 1937.9(6)	118.94(2)	MnC ₄ P ₂	P 00	235.6(4,4) 181.9(12,26)	84.7(1) ^{k s}	24
Mn ¹ (CO) ₄ {SC(NPh)P(S)Ph ₂ }	8	P2, /c	4	1109.5(3) 966(3) 2256.7(3)	103.11(2)	MnC ₄ S ₂	s oc oc	240(1,10) 181(4,3) , 187(4,4)	90.8(2,3.5) ¹ 178(2)	25
cis-[Mn¹(CO)₂{P(OMe)₂Ph}₄]. .PFa	e	P2/c	2	1451(1) 942(1) 1860(2)	124.5(2)	MnP_C_	oc P	227.2(4,10) 178(13)	90.5(6) ^{m1}	26
trans-[Mn'(CO) ₂ {P(OMe) ₂ Ph} ₄](PF	E (*	P2,/n	4	2299(3) 1438(2) 1421(2)	107(2)	MnP4C2	POC	227.1(7,10) 183.9(17)	177.9(8) ^m 2	26
Mn¹(CO)₄(PPh ₃ CI	tı	- 1d	8	9970(4) 1176.5(4) 963.6(4)	924(1) 96.71(1) 73.22(1)	MnC ₄ PCI	4 5 8 8 2 8 8	239.8(4) 235.8(5) 175.2(15)(2x) , 183.9(14,20)	89.4(4,1.8) ⁿ 177.2(5)	27

Table 2, cont. (2)

Table 2, cont. (3)										
Compound	Crystal Class	Space Group	ы	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	-	M-L [pm]	OC-M-CO cis-[°] trans-[°]	Ref
Mn ¹ (CO)4{SC(NPh)PPh ₂ }	ŧ	' ፲	7	989.4(9) 1042(8) 1088.5(8)	91.45(4) 97.10(4) 100.53(5)	MnC_PS	4 % C C %	231(1) 238.3(3) 181.2(5,4) 185.2(5,3)	92.6(2,3.3) ^{0,} 171.5(2)	25
Mn ¹ (CO) ₄ {SC(NPh)PPh ₂ }	5	- IA	81	989.3(6) 1049.7(5) 1093(7)	91.42(3) 972(2) 100.64(4)	MnC ₄ PS	PC S P	231.6(1) 239.8(1) 181.5(5,5) ,186.2(4,7)	°0	28
Mn(CO) ₃ (PPh ₃)(CSNMe ₂)	t,	- 14	8	960.5(11) 1100.5(12) 1151.6(12)	77.71(6) 97.83(6) 97.62(7)	MnC ₄ PS	LC O S P	240.4(3) 234.9(3) 180(6,16) 192.4(6)	93.3(3,6.3) ⁰³	29
[Mn(CO) _a (PPh _a){C(SMe)NMe _a }BF ₄	E	P2,	3	958.1(12) 1655.9(9) 872.7(15)	101.81(6)	MnC ₄ PS	LC C S P	236.7(5) 236.3(6) 184.9(24,51) 184.3(17)	93.1(8,6.1) ⁰⁴	29
Mn ¹ (CO) ₄ Br(PPh ₂ -C(O)CH ₂ CHClCH	ш (г	P2,/c	4	1371.2(2) 950.2(2) 1661.1(7)	93.99(2)	MnC ₄ PBr	oc ^B P	233.7(3) 250(2) 185.5(12,25)	91.5(5,2.8) ^P 173.1(5)	30
[fac-Mn ₁ (CO) ₃ (NH ₃) ₃][Mn(CO) ₅]	or	Pnma	4	1245.1 953.4 1227		MnC _a N _a MnC _s ^{Pa}	zυ	290.6(7,1) 176.9(9,6)	89.3(3,1.9) ^q	9
Mn¹(CO)₅(py)₂(F₃CCOO)	8	P2,/c	4	1261.5(2) 851.2(2) 1594(2)	96.761(9)	MnC _a N _z O	OZU	204.2(5) 209.8(7,12) 178(1,2)	88.6(4,1) ₅	15
[Mn ¹ (CO) _a (NH _a NHCS _a CH _a]Br	or	Pbca	8	2193.3(5) 2698(1) 713.4(4)		MnC ₃ N ₂ S	ΩZΩ	234.7(7) 212(2,4) not given	not given	31

Compound	Crystal Class	Space Group	z	a[pm] b[pm] c[pm]	գ[°] հ[°] ୪[°]	Chromo- phore	M-L [pm]		OC-M-CO cis-[°] trans-[°]	Ref
Mn¹ (CO) ₃ (PPh₃) ₂ H	a	C2/c	4	2354(1) 967.2(3) 1594.1(7)	114.90(4)	MnC ₃ P ₂ H	H 146(8) P 226.7(5 C 180.5(6	() (11)	ţ	32
Mn ¹ (CO) ₃ (PPh ₂ Me) ₂ H	8	C2/c	œ	1679(1) 1720(1) 1903(1)	106(1)	MnC _a P _a H	H 1.5 P 225.5(- C 178	.,2)	ta	33
fac-Mn ¹ (CO) ₂ (NCS) (dpp m)	Ø	P2,/n	4	1804(3) 1285(2) 1223.5(2)	98.89(2)	MnC ₃ P ₂ N	M 201.5(4 P 233.9(1 C 178.7(5 C 182.4(5	() () () () () () () () () () () () () (91.7(2,3) ^u	34
fac-Mn ¹ (CO) ₃ Br{P(OMe) ₂ Ph} ₂	or	P2, 2, 2,	4	1719(2) 1671(2) 827(1)		MnC ₃ P ₂ Br B	r 253.2(F P 230(4,4	6 2 2	90(5,1.6) ^{V1}	35
mer-Mn'(CO) ₃ Br{P(OMg) ₂ Ph} ₂ ^{V2}	e	P2,/n	œ	1494(2) 2494(3) 1334(1)	109.6(2)	MnC ₃ P ₂ Br B	r 252.4(⁷ P 227(8,1 C 180(3,0	ເຊີຣ	93.4(12,2.8) ^{V3} 173.3(10)	35
						MnC _a P _a Br _a B	r 253.2(5 P 225.9(5 C 187(3,5	3 ,2)	90.6(9,4) ^{V4} 178.6(18)	
fac-Mn¹ (CO)_aCl(dmap)	or	Pbca	8	1527.9(8) 1544.5(8) 1398.2(8)		MnC _a As _a Cl C A O	1 241.5(9 s 243.2(6 C 174(4,4	() () () () () () () () () () () () () (91(2,1) ^X	36
fac-Mn' (CO) ₃ Br{S _a CCMe ₂ PPh ₃ }Y	E	P2,/c	4	981.1(6) 1961.5(7) 1292.2(8)	90.69(5)	MnC ₃ S ₂ Br B	r 253.6(1 S 236.6(1 C 178(5,	() (1,15) (7)	$91(2,3.5)^{y}$	37

Table 2, cont. (4)

(2)	
cont.	Ŧ
2,	100
Table	Compo

- 77
- 6
- 6
- 2

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore		M-L [pm]	OC-M-CO cis-[°] trans-[°]	Ref
Mn ¹ (CO) ₃ Cl(P(Ph ₂)C ₅ H ₇ N ₂) ^{V2}	Ħ	P2./c	œ	1416(6) 1616.5(8) 1900.2(6)	105.67(3)	MnC ₃ NPCI MnC ₃ NPCI	5×4°55×4°8	237.1(6) 211(1) 233(6) 179(2,3) 237.5(7) 237.5(7) 209(1) 230.1(6) 184(2,10)	91(1,2) ²¹ 91.6(9,5.4) ² ²	38
fac-Mn¹(CO) _a Br{Ph₂PC(S)NPh₄}	8	C2/c	œ	2446(8) 1316(3) 1945(6)	132.68(2)	MnC _a SPBr	S P S Br	255.7(2) 238.1(3) 231.5(3) 181.2(12,29)	2 ³	28
Mn ¹ (CO) ₂ (ac) (PPh ₃) ₂	E	P21/c	4	1774.4(2) 969.2(1) 2000.4(2)	106.195(4)	MnC ₂ O ₂ P ₂	402	226.8(3,8) 206.8(7,2) 173.1(13,30)	89.3(5) ^{2.4}	33
cis-cis-[Mn¹(CO)₂(phen). .{P(OMe)₃}]ClO₄	ม	Id	67	1332(2) 859.5(1) 1376.4(2)	104.11(2) 114.68(1) 96.48(1)	MnC _z N _z P _z	4 X C C A P	222.2(2) 206.9(5,13) 177.1(8) , 181.5(9) , 229.3(2)	88.3(3) ² °	40
cis-trans-[Mn ¹ (CO) ₂ (phen). ^Z ₆ . {P(OMe) ₃ }]CIO ₄	8	P2, /c	4	1137.70(5) 1346.50(5) 1828.80(5)	77.504(4)	MnC ₂ N ₂ P ₂	ЧхО	224.7(2,6) 205.6(4,0) 178.5(5,1)	91.8(2) ²⁷	41
	E	P2,/m	₹	2272.8(5) 1355.5(2) 900.6(1)	76.45(1)	MnC ₂ N ₂ P ₂	d Z O	225.2(2,2) 206(5,2) 179.4(7,3)	$90.3(3)^{2_{B}}$	

Footnotes, Table

- The first number in parenthesis The mean value for chemically identical angle or distance. 65
 - is the e.s.d. and the second is the maximum deviation from the mean.
 - The chemical identity of coordinated atom or ligand. م
- At 198 K. ບ
- Bv neutron diffraction. ъ
- C-Mn-H = 82.9(7,1) and 178.8(8)°. C-Mn-O = 88.7(2,4.9) and 175.6(2)°.
- C-Mn-Cl = 88.3(2,2) and 179.3(4)°.
- C-Mn-P = 87.6(2, 2.4) and $178.2(2)^{\circ}$
 - C-Mn-P = 86.3(2,2.8) and 178.3(2)^o.
- OC-Mn-CL = 89.9(4,1.5) and 176.3(4,1.4)°; OC-Mn-Br = 88.8(3,6) and 177.4(3)°; LC-Mn-CL = 89.1(4)°; LC-Mn-Br = 87.9(3,1.6)°. OC-Mn-CL = 90(2,5) and 176(2,0)°; OC-Mn-Br = 90(2,2) and 177(2)°; LC-Mn-CL = 93(2)°; LC-Mn-Br = 86(1,2)°. OC-Mn-CL = 90.0(3,1.4) and 175.8(2)°; OC-Mn-N = 92.8(2,3.2) and 175.2(2)°; LC-Mn-CL = 86.3(2)°; LC-Mn-N = 92.5(2,3.3)
- and 174.8(3)°; N-Mn-N = 79.3(2)°. OC-Mn-CL = 93.7(2,1.2) and 174.6(2)°; OC-Mn-N = 94.4(2,1.6) and 174.4(2,6)°; LC-Mn-N = 83.1(2.2)° and N-Mn-N = 79.2(2)°. The value of P-Mn-P angle. - × ×
 - the value of P-Mn-P angle; OC-Mn-CO = 90.9(5,3.7) and 178.3(5)°; OC-Mn-P = 90.1(4,2.4) and 174.3(4.1)° At 150 K;

 - C-Mn-S = 89.4(1,6.5) and 177.3(1,1.1)°; S-Mn-S = 901(3)°. C-Mn-P = 88.4(3,1.9) and 176.7(5)°; P-Mn-P = 92.1(1,1.9) and 176(2). C-Mn-P = 90(6,3.8)°; P-Mn-P = 90.2(3,2.7) and 174.3(3,3)°.
 - ล์ ล์
- ະ ດ້
- C-Mn-Cl = 88.8(4,3,4) and 175.3(4)°; C-Mn-P = 93.4(3,3.9) and 172.3(3)°; Cl-Mn-P = 86.55(14)°. C-Mn-S = 88.6(2,5.6) and 170.7(2)°; C-Mn-P = 92.2(2,5.5) and 167.0(2)°, S-Mn-P = 730(4)°. C-Mn-S = 88.6(2,5.6) and 170.8(2)°; C-Mn-P = 92.2(2,5.7) and 167(2); and S-Mn-P = 72.9(0)°. OC-Mn-CL = 87.3(3)°, 106.8(3) and 153.5(3)°; OC-Mn-P = 90.3(2,1.5) and 176.8(2)°; OC-Mn-S = 101.4(2,8.3) and 150.5(2)°; LC-Mn-P = 90.7(2)°; LC-Mn-S = 44(2)°; and S-Mn-P = 87.3(1)°. 20 ő
 - OC-Mn-CL = 88(8), 105.9(7) and 154.9(8)°; OC-Mn-P = 88.7(5,1.8) and 176.1(7)°; OC-Mn-S = 101.9(7,5.2) and 152.9(6)°; LC-Mn-P = 92.2(4)°; LC-Mn-S = 48.3(5)°; and S-Mn-P = 86.3(1)°. C-Mn-P = 91.1(4,1.4) and 175.2(4)°; C-Mn-Br = 86.1(4,1.6) and 178.1(4)°; and P-Mn-Br = 90.5(1)°. 8
 - - C-Mn-N = 92.5(3,1.7) and 177.8(3,1.2)^o; and N-Mn-N = 85.9(2,7)^o Q 0 4

 - Data given in Table 1.
- C-Mn-O = 93.9(3,1.7) and 176.7(3)°; C-Mn-N = 92.4(3,3.1) and 177.2(4,4)°; O-Mn-N = 84.7(3,1.1)°; and N-Mn-N = 87.6(3)°, H-Mn-C = 79(3) and 180(3)°; P-Mn-C = 92.7(3,2.6)°; and P-Mn-P = 169.66(8)°. ئتھ

 - P-Mn-C = 92 and 93°, and P-Mn-P = 175°. C-Mn-N = 90.6(2,7) and 177.4(2)°; C-Mn-P = 95.6(2,3) and 167.2(2,6)°; N-Mn-P = 84.9(1,2.2)°; and P-Mn-P = 71.3(1)°.

Footnotes, Table 2 (continued)

- C-Mn-P = 89.3(4,4) and $175(4,1.8)^{\circ}$; C-Mn-Br = 86.4(4,1) and $175.4(5)^{\circ}$; $P-Mn-Br = 92.2(2,2.8)^{\circ}$; and $P-Mn-P = 96(1)^{\circ}$. 5
 - There are two crystallographically independent molecules. 2
- ž
- *

- C-Mn-P = 89.9(8, $\tilde{x}_{.3}$)°, C-Mn-Br = 86.7(8, 2.8) and 178.5(7)°; P-Mn-Br = 90.3(2, 3.7)°; and P-Mn-P = 178.7(7)°. C-Mn-P = 89.9(7, 2.4)°; C-Mn-Br = 89.4(9,4.8) and 178.1(6)°; P-Mn-Br = 90.4(3, 3.8)°; and P-Mn-P = 179.1(11)°. C-Mn-CI = 92(1,2) and 177(1)°; C-Mn-As = 92(1,2); CI-Mn-As = 85.7(2,2)°; and As-Mn-As = 87.1(2)°. At 163 K; C-Mn-S = 93.5(2,4.8)°; C-Mn-Br = 90.5(2,3.8) and 176.8(2)°; S-Mn-Br = 90(1,2.6)°; and S-Mn-S = 72.5(1)°. C-Mn-CI = 88.8(7,1.7) and 180(7)°; C-Mn-N = 98.1(8,5.6) and 167.1(9)°; C-Mn-P = 94.5(8,6.4) and 170.2(7)°; CI-Mn-N = 87.5(4)°; × ว จ์
 - Cl-Mn-P = 91.9(2)°; and N-Mn-P = 66.5(5)°. C-Mn-Cl = 89(7,1.9) and 175.1(7)°; C-Mn-N = 94.8(7,2.1) and 166.3(9)°; C-Mn-P = 95(8,3.9) and 164.3(6)°; Cl-Mn-N = 87.9(4)°; Cl-Mn-P = 93.7(2)°; and N-Mn-P = 67.5(5)°. Ň
- C-Mn-S = 94.1(4,1.5) and 171.4(5)°; C-Mn-P = 95.7(4,4.5) and 187.7(4)°; P-Mn-Br = 89.3(1)°; P-Mn-S = 72.5(1)°; and S-Mn-Br = 86.3(1) CZ.
- C-Mn-O = 104.6(4,2.1) and 165.9(5,2.2)°; C-Mn-P = 90.8(3,2.3)°; O-Mn-O = 61.6(3)°; O-Mn-P = 879.1(2,4.1)°; and P-Mn-P = 177.4(1)°. C-Mn-N = 92.3(3,3.5) and 171.5(3)°; C-Mn-P = 88.3(2,2) and 176.9(2)°; N-Mn-N = 79(2)°; N-Mn-P = 92(2,6.5) and 174.2(2)°; กี้ ก็
 - $P-Mn-P = 95.28(7)^{\circ}$.

 - Two kinds of crystals. 2.5
- C-Mn-N = 94.4($\tilde{2}$,1) and 173.6(2,2)°; C-Mn-P = 90.2(2,1.7)°; N.Mn-N = 79.5(2)°; N-Mn-P = 89.6(1,1.4)°; and P-Mn-P = 178.63(5)°. C-Mn-N = 95.2(3,6) and 174.2(3,7)°, C-Mn-P = 90.4(2,1.1); N-Mn-N = 79.5(2)°; N-Mn-P = 89.6(1,2.1)°; and P-Mn-P = 178.94(7)°. 1 1

Figure 1. Structure of the $[Mn(CO)_4PPh_3]$ Ion. Reproduced with permission from Inorg. Chem. [9]

Figure 2. Structure of Mn(CO)₅{OC₆H₄OP(O)} Reproduced with permission from J. Organomet. Chem. [18]

Table 3 Crystallographic and Str	uctural Da	ta for M	onon	ıclear Mang	anese Carb	onyi Compou	india wi	th H-borat	e Ligands ^a	
Compound	Crystal Class	Space Group	17	a[pm] b[pm] c[pm]	α[°] β[°]	Chromo- phore	W.	.г. [ш	OC-Mn-CO OC-Mn-H M-Mn-H	Ref
Mn'(CO) ₃ (B ₃ H ₆) ^C	8	P2,/c	4	1606.9(9) 590.1(3) 1172.2(6)	95.10(4)	MnC _a H _a	C ^b 18 H 16 (B 22	1.5(6,7) 9.3(46,57) 9.0(7,26)	91.1(2,1.2) 88.3(16,4.9),175.3(16,2.0) 92.5(22,3.4)	42
Mn ¹ {CO) ₄ (B ₃ H ₇ Br) ^d	0 r	Pmcn	4	765.8(3) 908.4(3) 1542.6(5)		MnC ₄ H ₂	С 18 Н 17 (В 23	4.2(8,25) 7.7(2x) 5.6(9,0))	91.2(4,1.3),177.6(4) 88.4(0,3.5;177.7(0) 93.8(0)	43
Mn ¹ (CO) _a (B ₆ H _{1a})	10	Pmcn	4	1154.9(2) 550.6(1) 1926.0(3)		MnC _a H _a	C 18 B 16 B 23 C 18	1.5(3,2) 7.6(35) 0.7(28) 5.7(4,26))	92.5(2,2) 87.6(9,3.2),177(11,9) 94(15,4.9)	44
(PPh _a Me)[Mn ¹ (CO) _a (B ₆ C ₂ H ₆)]	tr	P1	8	1121.6(5) 1128.5(4) 1146.4(5)	105.79(1) 104.46(1) 98.04(1)	MnC ₅	CC	7.2(4,8) 4.5(4,2) 2.7(5)) 5.3(5,4))	not given	45
Mn(CO) _a (B ₉ H ₁₂)(thf)	ţ	- Id	61	982.8(3) 1330.5(5) 693.7(2)	90.1(2) 104.23(2) 109.87(3)	MnC ₃ H ₂	С 18 Н 17 (В 22	0.2(5,12) 0(-,8) 2.1(4,15)	91.43(20,2.97) 91.39(-,4.7),173.91(-,38) not given	46
Mn(CO) _a (B _a H ₁₂)(Et _a N(CH ₂) ₄ O)	tr	PI -	2	1001.8(2) 1284.3(3) 930.5(2)	99.61(15) 94.545(14) 96.918(15)	MnC _a H _a	C 17 H 16 (B 22	8.6(7,13) 7(-,3) 2.9(7,33))	92.3(3,1.6) not given not given	47
Mn(CO) _a {B _a H, ₂ (OC ₄ H _a)}	ŗ	P1	8	1286.6(23) 979.2(21) 718.3(13)	90.21(6) 108.12(6) 104.48(6)	MnC _a H _a	C 17 H 17 (B 22	9.3(5) 5(4) 1.7)6,21)	90.61(20.53) 91.32(-,1.46),175.7)(-,1.48) 93.45(-,2.20)	48
a The mean value for chemically	identical	angle or	dista	ance. The	first numb	er in parentl	nesis			

is the e.s.d. and the second is the maximum deviation from the mean. The chemical identity of coordinated atom or ligand. At 178K. At 173(2)K.

اه د م

The effects of steric hindrance of the ligands can be seen in the elongation of Mn-P bonds for PR₃ compounds. Thus the mean values for Mn-P are: 225.2 pm (P(OMe)₃) $\langle 227.6 \text{ pm} (P(OMe)_2\text{Ph}) \langle 231.0 \text{ pm} (PPh_3)$. Another factor affecting bond lengths is the coordination number of the manganese, the former increasing as the latter increases from four to five to six. For example the mean Mn-CO distances are: 174.8 pm (four coordinate) $\langle 179.4 \text{ pm} (\text{five coordinate}) \langle 181.6 \text{ pm} (\text{six coordinate})$. The mean Mn-PPh₃ distances are 226.8 pm (five coordinate) $\langle 231.0 \text{ pm} (\text{six coordinate})$.

3. Compounds with H-borate ligands

The data for this class of compounds are listed in Table 3. The crystal structure of yellow $Mn(CO)_4(B_7H_7Br)$ [43] is shown in Figure 3, in which six coordination is achieved by four carbonyls (Mn-C = 184.2(8.25)pm) and a bidentate B_3H_7Br ligand via two Mn-H-B bridge hydrogen bonds (Mn-H = 177.7 pm).

The mean Mn-CO bond distance of 180.4 (range 176.5 to 186.7 pm) as well as Mn-HL bond distances of 173.7 (range 164 to 183 pm) are shorter than those found for mononuclear manganese carbonyls at 181.6 and 174.2 respectively (Table 2). The mean Mn-HL bond distance elongates in the order: 169.3 pm (HL = $H_{e}B_{e}$) <174.2 pm ($H_{13}B_{e}$) <175 pm ($H_{12}B_{e}$) <177.7 pm $H_{2}B_{e}Br$). This reflects the steric hindrance associated with each of the ligands.

Figure 3. Structure of $Mn(CO)_4(B_3H_7Br)$ Reproduced with permission from J. Amer. Chem. Soc. [43]

(B) Binuclear Carbonyl Compounds

Crystallographic and structural data for the binuclear derivatives are summarized in Table 4. The structures are tabulated in the order of increasing distance between the manganese atoms. There are several distinct types of bridging, the distorted edge-shared bi-octahedral structure with two bridging ligands being the most common. In two cases, $Mn_2(CO)_6(\mu-C1)_2(thf)_2$ [73] and $Mn_2(CO)_6(\mu-C1)_2$ [73a], two chlorine atoms function as bridges. Two bromine atoms serve this role in $Mn_2(CO)_6(\mu-Br)_2(P_2Ph_4)$ [75] and $Mn_2(CO)_6(\mu-Br)_2$ [78]. In several cases two sulphur ligands serve as the bridges, as in $Mn_2(CO)_6(\mu$ pmte)₂ [31] and four other hexacarbonyldimanganese derivatives [51, 69, 79, 82]. In two cases [70, 71] nitrogen ligands link tetracarbonylmanganese moieties. Two PX₂ ligands bridge the $Mn(CO)_4$ units in two other examples [76, 77].

In another two examples, [50, 64], two MnC_4HP octahedra are bridged by hydrido and PPh_2 ligands. The last type of bridge involves phosphorus and carbon ligands in $Mn_2(CO)_7(\mu-CH=CH_2)(\mu-PPh_2)$ [50]. In this series of binuclear compounds the Mn-Mn distance is smaller than 300 pm only if the value of the Mn-L-Mn bridge angle is less than 92°.

The crystal structure of dark red $Mn_2(CO)_7(N=C(CF_3)_2)_2$ [49] is shown in Figure 4. Both nitrogen atoms of the hexafluoroisopropylidenimine ligands and a carbonyl carbon atom bring the manganese atoms within 251.83(24)pm with the

Figure 4. Structure of $Mn_2(CO)_7(N=C(CF_3)_2)_2$ Reproduced with permission from Inorg. Chem. [49]

Table 4 Structural Data f	or Binucles	rr Manga	anese	Carbonyl Co	apunda ^a						-
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	2	-L pm]	M-M[pm] M-L-M[°]	OC-M-CO cis-[°] trans-[°]	Ref
Mn _a (μ-CO){μ-N=C(CF ₃) ₂ }a .(CO) ₆	£	P2,/c	4	929.8(5) 2661.4(19) 954.3(8)	1210.0(5)	MnC4N2	ရဝိပ္ပီလ ပိုပ္ပံလို	$\begin{array}{c} 182.0(10,49)\\ 205.9(9,115)\\ 200.2(7,35)\end{array}$	C ^b 75.183(24) C ^b 75.19(34) N 77.71(26,14	89.87(39,2.57) d	49
Mn _a (μ-CH=CH _a)μ-PPh _a (CO)	r ^e tr	- 1d	4	1030.1(4) 1032.0(4) 2435.9(11)	92.70(3) 92.17(3)	MnCsP	ပ္ပင္လင္က	$184.3(4,11) \\ 226.4(4) \\ 207.2(5,15) \\ 231 1(2,58) \\ 321 1(2,58) \\ 321 1(2,58) \\ 321 1(2,58) \\ 321 1(2,58) \\ 331 1(2,58) \\ 331 3(3,58) \\ 331$	273.8(2) C 83.10(2) P 73.00(1)	90.7(2,4.6) 176.7(2) e	50
						MnCsP	၂၀၀၀န	226.4(7) 226.4(7) 207.8(6,25) 231.1(1,54)	275.0(2) C 82.40(3) P 72.6(1)	90.6(2,5.8) 173 _{.8} (3)	
Ph ₂ [ŋ ₂ -C(μ ₂ -S)=C(μ ₂ -S)]M. .(CO) ₆	5	P2,/a	4	1812.4(3) 1006.4(3)	90 107.47(4)	MnC _a S ₂	လိုက် လူ	180.6(9,25) 223.1(2,7)	277.4(2) S 74.30(1,1)	91.4(4,1.5) f,	51
				1196.5(3)	6	MnC _a S _z	လိုင္ရ လိုင္ရ	181.9(9,8) 220.0(6,17) 236.3(2,3)		89.8(4,1.9) f ₂	
[(OC) _a Mn ¹ (µ-N _a) _a Mn ¹ (CO). .(NEt ₄)	8 [e	P2,/n	4	1030 1021 2192	91.1	MnC _a N _a	Noon Noon	175(2,7) 208(2,3)	289.3(4) N 88.6	not given	52
Mn ^o g(CO) ₁₀ ^g	æ	I2/a		1408.8(3) 685.0(2) 1424.2(3)	105.08(1)	MnC ₃	00 00	185.6(2,9) 181.5(2)	289.50(6) -	91.85(9,4.65)	53
Mn ⁿ 2(CO)10	8	I2/a	4	1413.50(19) 709.99(9) 1462.77(22)	105.167(15	MnC ₅	0C 0C	185.6(2,9) 181.1(3)	290.38(6)	91.72(11,3.78) 172.57(10,190)	53a
Mn ⁰ 2(CO)10	e	12/8	4	1416(2) 711(2) 1467(2)	106.0(5)	MnC _s	00 00	183.1(16.24) 179.2(14)	292.3(3) -	91.8(6,4.3) 172.3(6,2.2)	54

Table 4, cont. (2)											
Compound	Crystal Class	Space Group	13	a[pm] b[pm] c{pm]	a[°] ß[°] ¥[°]	Chromo- phore	-	۲-۲ (ba)	M-M[pm] M-L-M[°]	OC-M-CO cis-[°] trans-[°]	Ref
Mn [°] a(CO) _a (PMe ₂ Ph)	e	C2/c	60	2365.6(5) [312.3(5)	98 . 89(5)	MnCs	30	176	290.4 -	not given	55
				1371.5(5)		MnC ₄ P	204	176 223.9			
Mn ^o a(CO) _s (PMePh _a) ₂	E	P21/c	ব	1539 849 2615	95.7	MnC4P	S a	175 223	290	not given	56
Mn ^o a(CO) _s {P(OMe) _a }a	ō	Fdd2	00	3877.8 1791.6(2) 695.5(1)		MnC ₄ P	р оС	184.0(21,77) 216.9(5)	291.2(3) -	89.8(9,8.0) 170.2(9,3.5) h,	57
Mn ⁰ a(CO) ₈ (Pet _a)2						MnC ₄ P			290.32(14)	ћ <u>а</u>	58
Mn ^o 2(CO)4(Pet3)2	or	Aba2	60	[594(3) 1478(3) [160(2)		MnC ₄ P	00	181(4,7) 224.7(7)	291.3(6)	not gi ven	23
Mn ⁰ _a (CO) ₇ (bdmp)	B	ບໍ	47	1731.2(3) 815.6(2)	124.28(2)	MnC ₄ P	S a	181.7(7,31) 225.3(1)	292.0(1) -	92.05(5,6.7) 176.2(6)	60
				1726.1(3)		MnC ₇ P	0 0 0 0 0 0	180.3(8,7) 217.2(6,28) 257.3		91.5(4,5.6)	
Mn ⁰ ₂ (CO) ₈ (mdpp) ₂ . CH ₂ Cl ₂ . C ₆ H ₁₄	a	ပိ	4	1965.0(3) 1690.8(2)	130.89(1)	MnC ₃ P ₂	ວິວ	168(3,2) 193(3) 295 7(0 99)	293.4(3) C 96(1)	180.2 İı	61
				(#)6.6222		MnC ₄ P ₂ O	- 2,255 -	223.(1, 2, 2, 2, 1, 17] 201(3) 229(2) 228.8(9, 24)		98(1) 12	

Table 4, cont. (3)											
Compound	Crystal Class	Space Group	2	a{pm] b{pm] c{pm]	α[°] β[°] ğ [°]	Chromo- phore	E -	A-L [md]	M-M[pm] M-L-M[°]	OC-M-CO cis-[°] trans-[°]	Ref
Mn ₂ (CO) ₄ (μ-pCH ₃ C ₆ H ₄ NC). .(mdpp) ₂	ħ	ы. Н	5	1465.19(19) 1484.07(20) 1752.87(2)	69.881(10) 83.360(11) 60.286(8)	MnC ₃ P ₂ N	ຽບຊຸ	178(1,1) 214(1) 212(1) 226,9(3,10)	293.6(2) C 95.9(5)	99.0(5) j,	62
						MnC ₃ P ₂	ບິບຈ	179(1,2) 181(1) 224.6(3,1)		102.1(5) ja	
Mn _a (CO) ₄ (μ-H)(μ-Br)(tedip)	or	Pbca	œ	3306.6(22) 1443.5(7) 1480.6(7)	æ	nC ₂ P ₂ HB ₃	P Brc OC	not given not given 248.1(4,4) 221.2(5,4)	293.6(3) Br 72.6(1) H not given	k	63
Mn ₂ (CO) ₈ (μ-H)(μ-PPh ₂)	a	12/c	4	1676(2) 815(7) 1703(2)	110.46(2)	MnC ₄ HP	000 ⁰⁰	181.4(18,36) 186(6) 228.4(6)	293.7(5) H 104.1(4.8) P 80.04(27)	$90.57(80,5.94) \\ 177.23(74) \\ 1$	64
Mn°a(CO)a(AsMe2Ph)a	E	C2/c	4	1075 1394 1849	98.15	MnC ₄ As	As	178 246	294	not given	56
Mn ₂ (CO) ₆ (μ-H)(μ-PPh ₂). .(CNBu) ₂	tr	14	5	1768.6(3) 1006.3(2) 923.1(3)	96.92(4) 99.40(4) 104.34(5)	MnC4HP	DO DHO	180.5(6,25) 194.2(4,10) 165(-,2) 228.2(2,2)	295.9(1) H 127 P 80.8(1)	91.8(2,5.9) m	50
Mn°a(CO) _A (mdpa) _a	ŧ	14	2	1119.1(1) 1649.8(5) 945.5(1)	93.64(2) 109.08(2) 89.36(2)	MnC ₄ As	OC As	178(2,6) 240.9(2,2)	296.2(3)	91.7(8,5.3) 171.8(8,4) n,	65
Mn° _a (CO) _A (f ₄ fars)	or	Pna2,	4	17 4 7.9(3) 1027.3(3) 1271.3(3)		MnC ₄ As	OC As	180(2,3) 239.9(2,7)	297.1(2) -	92.6(4,3.7) 168.8(4,6) n ₂	376 377
Mn_(CO),I_(ffars)	E	P2,/c	4	1385(2) 1479(1) 1396(2)	102.2(1)						377

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore		M-L [pm]	₫-M[pm] ₫-L-M[°]	OC-M-CO cis-[°] trans-[°]	Ref
Mn ^a (CO),0 ⁰						MnCs	88	180.3(16) 187.3(5)	297.7(11)	93.4(5)	89
Mn _a (CO) _a {µ-SC(SMe)(NMe)}	E	P2,/n	4	984.5(2) 1379.1(4) 1497.2(5)	98.23(4)	MnC _a S _a N	voo Na n	180.6(4,11) 242.7(1,14) 202.9(3,6)	323.3(1) S 95.12(4,5	90.3(2,3.5)) p	69
[PhH=NMn(CO)4]2	ţ	- Id	1	723.6(1) 888.9(2) 946.8(2)	80.52(2) 77.38(1) 77.44(1)	MnC ₄ N ₂	NO NO	185.17(26,157) 202.71(16,43)	323.49(8) N 105.87(8)	89.87(10,1.96) 177.83(10) q	70
Mn ₂ (CO) ₆ (µ-NSOF ₂) ₂	E	P2,/n	7	1002.4(5) 1175.7(5) 736.8(4)	100.96(4)	MnC ₄ N ₂	20 N 00	180.7 189.9 211.2(6,4)	331.8(2) N 103.5	not given	11
Mn ₂ (CO) ₄ (µ-Br) ₂ (tedip) ₂	0	Pbca	4	1537.8(4) 1632.7(5) 1445.3(4)		MnC _a P _a Br _a	Br ^e	ot given 224.0(6,2) 252.4(4,2)	351.7(4) 3r 88.4(1)	54	63
Mn2(CO)6(µ-Br)(BaHa)	E	P2,/c	4	1092.1(8) 705.2(4) 1898.2(12)	113.05(6)	MnC _a H _z Br	ы ^в гс	180(10,30) 161.8(-,141) 250.7(3,2)	355(0) 3r 90.02(9)	90.04(45,18) s	72
Mn _a (CO) ₆ (µ-Cl) ₂ (thf) ₂	E	P2,/c	2	852.4(1) 1091.2(2) 1133.8(1)	112.80(1)	MnC _n Cl ₂ O	cie 2	178.9(7,10) 210.0(4) 239.7(2,2)	356(2) 21 95.9(1)	89.3(3,5) t	73
Mn' _a (CO) _s (μ-pmte) _a	tr	- Id	-	$\begin{array}{c} 1096.0(3) \\ 1037.3(2) \\ 1107.6(3) \end{array}$	$130.65(8) \\ 129.50(7) \\ 85.20(7)$	MnC ₃ S ₂ N	SzS	181(2,1) not given 238.0(6,32)	356.3(4) 596.9(2)	89.1(8,1.1) u	31
Mn' ₂ (CO) ₆ (μ-Cl) ₂	E	P2,/c	4	942.1(2) 1158.9(2) 1276.7(1)	109.68(2)	MnC4Cl ₃	CI C	185.2(3,46) 239.5(1,1) C	356.9(1) 96.3(1,0)	90.5(1,5) 178.5(1,1) v	74

Table 4, cont. (4)

Table 4, cont. (5)												
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	α[°] Β[°] ¥ [°]	Chromo- phore	£ -	L-L [md]	M-M M-I	[wd]] [wd]]	OC-M-CO cis-[°] trans-[°]	Ref
Mn ¹ 2(CO) ₆ (μ-Br) ₂ (P ₂ Ph ₄)	ħ	- 14	5	1087.4(8) 1184.1(9) 1244.4(9)	96.59(4) 100.55(5) 95.37(4)	MnC ₃ Br ₂ P	Br _c OC	not given not given 252.6(5)	Br	366.1(2) 92.5(5)	not given	75
Mn' _a (CO) _a (μ-PMe _a) _a	u	Pbca	4	13 45.4 (3) 1262.1(3) 1125.2(5)		MnC ₄ P ₂	ಲ್ಲಿ	183(1,2) 234.7(3,2)	ቤ	367.5(2) 103.1(1)	92.9(6,5.8) 175.7(6) x1	76
Mn' _a (CO) _a (μ-PH ₂) ₂	t	- 14	1	680.4(3) 706.4(5) 919.1(6)	110.50(5) 91.92(5) 115.65(4)	MnC4P2	00 ¹	183.6(4,13) 235.1(1,1)	Ч	370.3(3) 103.9(1)	92.5(2,2.0) 174.0(1) X ₂	11
Mn ¹ 2(CO) _A (μ-Br) _z	E	P2,/c	4	957(1) 1179(2) 1291(2)	109.30(1)	MnC ₄ Br ₂	00°5	181(5,12) 252.6(10,12)	Br	374.3(8) 95.6(4,1)	91.2(2.0,3.2) 175.2(1.9,7) y	78
Ma _s (CO) _e (mbt) _a	B	C2/c (C2)		1438(2) 1184(2) 1390(2)	94.70(8)	MnC ₃ S ₂ N		·		ı	ı	79
Mn _a (CO) _s (CNPh)	B	P2,/c	4	1232 917 1788	108.3	Mn C ₆		I		ı	,	20
Mn _a (CO) _s (μ-As)(Me _a As _. CCF _a)	la tr	Id	61	958.0(4) 1527.9(6) 929.2(3)	93.07(2) 119.26(2) 82.80(2)	MnC _a As _a MnC ₆ As		ı		1	ı	80
(OC)₄Mn{μ-P(S)Me}Mn(CO)₅	E	P2,/n	4	659.4(3) 1520.6(3) 1521 $9(3)$	93.29(3)	MnC ₅ P	PcC	not given 239.4(2)	P 1	29.4(1)	•	81
				(0) 7 . 1001		MnC ₄ SP	Pcs oc	not given 241.4(2) 228.9(2)		ŀ	Z,	

Compound	Crystal Class	Space Group	z a[pi c[pi c[pi		α[°] β[°]	Chromo- phore	[md]	M+M[M+L-]	[m] [M[°]	OC-M-CO cis-[°] trans-[°]	Ref
[PhCH ₂ Nēt ₂] ₃ [Mn(CO) _a .(μ-S ₃ CS)] _a	5	' II	2 9128(9720(1330.	(9) (12) (8(6)	71.91(7) 79.97(6) 69.86(9)	MnC ₃ S ₃	OC not given S 236.0(4) S ^c 237.3(4,8)	26 S	.80(14)	L2	82
(OC) ₄ Mn(μ-AsMe _a) ₃ . .Mn(CO) ₃ Cl	e.	P2,/c	1 1043. 1495.	.2(3) .1(3) .7(2)	90.28(1)	MnC ₄ As ₂ MnC ₃ As ₂ Cl	OC 179-189 As ₂ 39.6(4) As ² 250.2(4) OC 179-189 CI 237.1(7) As ² 238.6(4) As ² 246.2(4)	As 12	3.6(1)	88.2-94.9(9) 2.3 88.2-94.9(9) 2.4	83
[(OC)•MnPPh20]2	8	P2./c	1 1158(1680(1920(3)(3)	116.39(5)	MnC40P	OC 183.4(19,53 O 204.9(8,10) P 235.8(5,5)			90.9(7,3.0) 176.1(7,1.0) ² s	84
(OC) _s Mn(µ-SCOCOS)Mn(CO),	8	P2,/n	2 662. 1079. 1262.	2(2) 0(7) 4(9)	94.93(5)	MnCaS	OC 184.1(2) OC 187.6(1) S 237.9(1)	ŝ		92.6(1)	85
(OC) _o Mn{µ-SC(C ₆ H ₄ F-4) ₉ CS) .Mn(CO) ₅	E	P2,/n	2 1072. 1175. 1123.	2(3) 7(2) 6(3)	90 111.16(3) 90	MnC _s S	OC 185.5(8,53) S 240.5(2)	ł		90.9(3,3.6) 173.5(3,2.9) ² a	51 86
{[(CCO ₂ C ₆ H ₁₁) ₂ (OC) ₄ MnS] ₃ .(μ-CS(C ₆ H ₄ F-4) ₂ CS)}	t	' Id	1112. 1131. 1227.	4(2) 6(3) 4(3)	88.48(2) 66.69(2) 80.31(2)	MnC _s S	OC 182.9(8,37) C 200.9(6) S 243.4(2)			90.8(3,4.6) 173.2(3) z_7	51 86
$\begin{array}{l} Mn_{\mathbf{z}}(\mathrm{CO})_{\mathbf{n}}\{\mathrm{P}_{\mathbf{z}}(\mathrm{t-BuN})_{\mathbf{z}},\\ \mathbf{P}_{\mathbf{z}}(\mathrm{t-BuN})_{\mathbf{z}}\}\end{array}$	E	P21'n '	1 1023. 1493. 1126.	1(3) 7(4) 0(2)	106.42(2)	MnC4P2	OC 183.6(5,14) P 229.3(1) P 250.7(1)	I		not given	87

Table 4, cont. (6)

Footnotes, Table

- The first number in parenthesis The mean value for chemically identical angle or distance. ഷ
 - is the e.s.d. and the second is the maximum deviation from the mean.
 - The chemical identity of coordinated atom or ligand. م
- The bridge atom (ligand) OC-Mn-C^C = 83.02(37,1.64) and 168.05(38,1.68)°; OC-Mn-N^C = 97.39(34,6.45) and 168.56(34,1.65)°; C^C-Mn-N^C = 89.41(31,2.93)°; N^C-Mn-N^C = 76.81(25,98)°. υÐ
- 175.2(2)°; = 84.1(2)There are two crystallographically independent molecules; OC-M-CL = 82.0(2), 97.3(2) and $172.5(2)^{\circ}$; $OC-Mn-C^{C} = 84.1(2)$ $OC-Mn-P^{E} = 94.1(2,9.3)$ and $167.0(2,3.8)^{\circ}$; $C-Mn-C^{C} = 36.5(2)^{\circ}$; $C^{-}Mn-P^{E} = 87.5(2,1.2)^{\circ}$; $P^{C}-Mn-C = 85.7(2)^{\circ}$; $OC-Mn-CL = 82.6(2)^{\circ}$; $97.3(2)^{\circ}$; 97e
 - ŝ
 - - - - At 74K.
- $OC-Mn-P = 93.5(6, 3.9)^{\circ}$
 - not given

- చచి బడ్డ్డ్.కి.కి.కి.కి

u

- - - $P-Mn-P = 177.5(2,1.4)^{\circ}$.
- 41 OC-Mn-P = 93.04(59.3.61) and 166.81(62)°; OC-Mn-H = 86.76(57,7.86) and 175.2(2.4)°; H-Mn-P = 87.9(2.4)°. OC-Mn-CL = 88.9(2,2.2) and 176.8(3,9)°; OC-Mn-H^C = 90(-,7) and 171(-,2)°; OC-Mn-P = 95.4(2,3.7) and 165.1(2,1.9)°; LC-Mn-H^C = 93(-,6)°; LC-Mn-P = 89.4(2,4)°; and P-Mn-H^C = 76(-,1)°. OC-Mn-As = 91.1(6,4.1) and 174.0(6,2.7)°. OC-Mn-As = 89.1(4,1.3) and 178.4(4,5)°.
- в Gaseous state, by electron diffraction. OC-Mn-S^C = 93.3(2,7.6) and $170.4(1,4.5)^{\circ}$; OC-Mn-N = 95.9(2,4.5) and $168.6(2,1)^{\circ}$; N-Mn-S^C = 68.4(1,1) and $92.4(1,3)^{\circ}$; S^C-Mn-S^C 84.12(4,9)°. é e ° o a
 - OC-Mn-N = 92.85(8,10.59) and $171.43(8,5.72)^{\circ}$; N-Mn-N = 74.13(8)^o.
 - $P-Mn-P = 167.6(2)^{\circ}$. 0" L
- $OC-Mn-Br^{c} = 90.80(28,76)$ and 178.33(25,23)°; OC-Mn-H = 91.49(-,12.05) and 175.21(-,1.67)°; H-Mn-Br^{C} = 84.82(-,9.76)°; and H-Mn-H = $89.72(-5.86)^{\circ}$.

Footnotes, Table 4 (continued)

- OC-Mn-O = 93.9(3,2) and 175.2(2)°; OC-Mn-CI = 91.3(2,2.0) and 177.6(2,2)°; O-Mn-CI = 88.7(1,5.1) and Cl-Mn-CI = 84.1(1)°. S-Mn-S = 83.1(2). ø
 - >
- OC-Mn-Cl = 90.6(1,2.6) and 176.5(1,4)°, and Cl-Mn-Cl = 83.7(1,1)°. OC-Mn-P = 89.6(4,3.5) and 169.1(4,9)°; and P-Mn-P = 76.9(1)°. OC-Mn-P = 90.0(1,5.2) and 170.8(1,5)°; and P-Mn-P = 76.1(1)°. OC-Mn-Br = 89.9(1,4,3.9) and 176.4(1.5,9); and Br-Mn-Br = 84.4(3,4)°. S-Mn-P = 51.1(1)°. S-Mn-P = 51.1(1)°. As-Mn-As = 90.8(1)°; OC-Mn-As = 86.1 93.8(8)°. As-Mn-As = 90.8(1)°; OC-Mn-As = 85.3(2,8)°.

- OC-Mn-O = 88.8(5, 9, 1) and $174.2(6, 2)^{\circ}$; OC-Mn-P = 90.4(6, 2.9) and $177.7(5, 2)^{\circ}$; and $P-Mn-O = 88.1(3, 2)^{\circ}$. OC-Mn-S = 86.7(2, 4.7) and $177.2(2)^{\circ}$.
 - - OC-Mn-S = 88.1(2,20.3) and 161.3(2)^o

Mn-N-Mn and Mn-C-Mn angles of $77.71(26.14)^{\circ}$ and $75.19(34)^{\circ}$ respectively. This is the shortest Mn-Mn distance found in manganese carbonyl compounds, being even shorter than that found for the coordination compounds of manganese [383] of 271.6 pm. There is an example of bridging via the α -N atoms of the three azide groups in [Mn₂(CO)₈(μ -N₃)₃.NEt₄ [52]. The Mn-Mn distance of 289.3(4) pm as well as the Mn-N-Mn bridge angle of 88.6° are larger than those found in the previous example [49], again showing the elongation of the Mn-Mn distance as the Mn-L-Mn angle opens.

There are several cases in which two MnC_5 or $MnC_4P(As)$ moieties are held together through a direct metal-metal bond: $Mn_2(CO)_{10}$ [53, 53a, 54]; $Mn_2(CO)_{9}$ -(PMe₂Ph) [55]; $Mn_2(CO)_{9}L_2$, L=PMePh₂ or AsMe₂Ph [56], P(OMe)₃ [57], PEt₃ [58, 59] and bdmp [60]. The mean Mn-Mn bond distance of 290.6 pm for MnC_5 chromophores is about 0.9 pm shorter than those for MnC_4P (As), reflecting the steric effect of the larger P or As donor ligands.

There are two examples in which two manganese atoms are joined by a single bond, 293.4(6) pm [61] and 293.6(2) pm [62]. In the former there are also two trans-diphosphine ligands and a carbonyl as bridges. In the latter, the carbonyl bridge is replaced by an isocyanide. The carbonyl bridge [61] is tridentate and donates a pair of electrons to one manganese (Mn-C = 193(3) pm) and a second pair of electrons to the other (Mn-C = 212(1)pm, Mn-O = 214(1)pm). The isocyanide bridge (62) is also tridentate, donating a pair of electrons to one manganese (Mn-C = 181(1)pm) and a second pair of electrons to the other (Mn-N = 212(1)pm, Mn-C = 214(1)pm).

In another two examples, $Mn_2(\mu-H)$ $(\mu-Br)(CO)_4$ $(tedip)_2$ and $Mn_2(\mu-Br)_2$ $(CO)_4(tedip)_2$ [63], in spite of the fact that they are structurally analogous, only the former case has a single Mn-Mn bond (293.6(3)pm). In the latter the distance of 351.7(4) pm indicates non-bonding between the two metal atoms. In both cases the two manganese atoms are bridged by two trans tetraethyldiphosphite ligands and two bridging ligands, hydrogen and bromine in the former, two bromine atoms in the latter. The elongation of the Mn-Mn distance observed above reflects steric hindrance in the latter case, with simultaneous increase in the value of the Mn-L-Mn bridge angle from 72.6(1)° to 88.4(1)°, respectively.

A single bond between two manganese (0) atoms has been found for $Mn_2(CO)_8(mdpa)_2$ (296.2(3)pm) [65] and $Mn_2(CO)_8(fyfars)$ (297.1(2)pm) [66, 67]. The molecular structure of both compounds can be considered to be derived from the parent $Mn_2(CO)_{10}$ molecule by the replacement of one equatorial CO ligand on each manganese atom with one of the arsenic atoms of the mdpa or fyfars ligand which then serves to bridge the manganese(O) atoms.

In the remaining examples (Table 4) there is no other case with a direct metal-metal bond, these involving one, two, three or four bridging atoms. The data show that the oxidation states of the manganese are zero and one, with the latter more common. The number of examples representing the various crystal classes increases in the order: orthorhombic <<triclinic <<monoclinic.

There is an example, $Mn_2(\mu-CH=CH_2)$ (μ PPh₂) (CO)₇ [50] in which two crystallographically independent molecules differ by degree of distortion, being the only example in this series of distortion isomerism. Non-equivalent manganese atoms are found in a number of cases. These are: five and seven coordinate [51, 61]; five and eight coordinate [60]; five and six coordinate [62]; six and seven coordinate [80]. There are examples with differing chromophore: MnC_5 and MnC_4P [55]; MnC_5P and MnC_4SP [81]; MnC_4As_2 and MnC_3As_2C1 [83]. In the remaining cases (Table 4) the manganese pairs have the same chromophore.

The influence of temperature on the degree of distortion has been reported for $Mn_2(CO)_{10}$ [53]. Both electronic as well as steric factors influence the Mn-L bond distance, which increases in the order: 234.7 pm (PMe₂) <239.1 pm (AsMe₂); 223.9 pm (PMe₂Ph) <246.0 pm (AsMe₂Ph); 226.5 pm (P₂-mdpp) <240.4 pm (As₂mdpa).

The mean Mn-L(terminal) bond distance increases in the order: 181.0 pm (CO) <205.6 pm (NL) <212.5 pm (CL) <232.0 pm (PL) <237.1 pm (C1) <240.8 pm (AsL). For the Mn-L(bridge) distance the increase is in the order 172 pm (H) <200.0 pm (CO) <204.4 pm (NL) <207.0 pm (CL) <229.4 pm (PL) <232.9 pm (SL) <239.6 pm (C1) <248.2 pm (AsL) <251.0 pm (Br). In general these trends follow the van der Waals radii of the coordinating atom.

It is noted that the mean bridge distance is longer than the terminal distance when L is CO (200.0 vs 181.9 pm), CI (239.6) vs 237.1 pm), or As(L) (248.2 vs 240.8). The opposite is true when L is N(L) (204.4 vs 205.6 pm, C(L) 207.0 vs 212.5 pm, or F(L) (229.4 vs 232.0 pm).

(c) Tri-, Tetra- and Hexanuclear Carbonyl Compounds

The structural data for these compounds are given in Table 5. There are eight trinuclear examples which can be organized into five distinct bridging types. A scalene triangle of manganese atoms is observed for $Mn_3(CO)_8(PMe_2Ph)(\mu_3-OEt)_2$ [88,89] and $Mn_3(CO)_8(\mu-OEt)_2(\mu_2-F/I)$ [89], with two face bridging ethoxy groups and one edge bridging ethoxy in the former, and halogen in the latter. The dimensions of the manganese triangle remains remarkably constant in all three compounds. The mean Mn-Mn distance increases with increasing size of the edge bridging group in the order: 286.5pm(F) <287.2 pm(OEt) <289.6 pm(I).

The crystal structure of another type is shown in Figure 5. The metal carbonyl system in $[Mn(CO)_4]_3(\mu-N_2Me)$ [90] consists of a bent Mn-Mn-Mn skeleton with typical metal-metal single bond distances (280.7(4) and 282.6(3)pm). The terminal diazo N(1) forms a bridge between Mn(2) and Mn(3) which causes the central manganese atom Mn(2) to have the unusual coordination number seven with the MnC_4NMn₂ chromophore.

Table 5 Structural data for	t ri -, teti	ra- and)	lexanuciear man	ganese carl	oonyl compour	nds ^a			
Compound	Crystal Class	Space Z Group	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	M-L [pm]	M-M [md]	M-M-M M-L-M [°]	Ref
[Mn _a ¹ (CO) _a (μ-OEt) _a (PMe _a Ph)	E	P2,/b 4	1760.9(2) 2131.9(3)		MnC ₃ O ₂	$\begin{array}{c} \operatorname{oc}^{\mathrm{b}_{175(2,5)}} \\ \operatorname{oc}^{\mathrm{c}} 201(1,1) \end{array}$	253.8(4) 286.7(2)	60.0(1,12.7) 90.0(6,14.3)	88 88
·			922.0(2)	127.16(1)	MnC ₃ O ₃	$\begin{array}{c} 0C & 177(2,6) \\ 0^{c} & 206(1,3) \end{array}$	321.4(3)	d2 d2	
					MnC ₂ O ₃ P	OC 178(2,1) O ^C 202(1,6) P 229.0(5)		d ₃	
$[Mn^{1}{}_{3}(CO)_{6}(\mu_{3}{}^{-}OEt)_{2}(\mu_{2}{}^{-}F)]$	Ø	P2,/b 4	934(1) 1988(2)		MnC ₃ O ₂	OC 176(4,24) O ^C 197(2,2)	260.2(8) 282.9(7)	60.0(2,11.1) 93(1,13)	68
			1023(1)	(9)69.68	MnC ₃ O ₂ F(2x	$\begin{array}{c} 0C & 176(4,30) \\ 0^{C} & 199(2,5) \\ F^{C} & 195(2,2) \end{array}$	(1)0.016	ະ ອີ	
$[Mn'_{a}(CO)_{a}(\mu_{a}\text{-}OEt)_{a}(\mu_{a}\text{-}I)]$	B	P2,/b 4	967(1) 1870(1)		MnC ₃ O ₂	OC 173(4,3) O ^C 210(2,1)	270.5(8) 283.5(8)	60.0(2,9.2) 90.0(1,11.0)	68
			1126(1)	(c)cZ.98	MnC ₃ O ₂ I(2x)	OC 177(4,8) O ^C 204(2,6) I ^C 279.1(6,102	31 9. 8(7)	f, fa	
{[Mn(CO),]3(µa-N3Me)} ^g	E	C4 4	989.1(2) 1460.7(3) 1319.6(5)	96.23(5)	MnC ₄ N	OC not given N ^C 196.8(8,93	280.7(4)) 282.6(3)	107.4(7) 93.8(4)	06
(Ph ₄ As)[Mn ₃ (CO), 4] ^h	t	- P1 2	1161.4(11) 964.6(12)	100.89(5) 96.66(6)	MnC ₅ (2x)	OC 180.6(37,55) 288.3(4)	180.0(0) h1	06
			1802.2(22)	90.96(5)	MnC4 MnC5	OC 179.5(36,24 OC 182.0(38,91	() 290.6(5)	h2 180.0(0)	
					MnC.	OC 179.8(36,5)		h.	

Table 5, cont. (2)											
Compound	Crystal Class	Space Group	Z C p a	[ud] [ud]	a[°] B[°] X [°]	Chromo- phore	2-	й-Г [bm]	M-M [pm]	M-M-M M-L-M M-L-M	Ref
Mn ₃ (CO), (dmp)	E	P2,/n	4 88 88 8	55.6(2) 50.3(3)	92.67(1)	MnC ₄ P(2x)	S ч	181.3(9,28) 227.8(2,89)	291.7(1) 305.3(1)	99.8(1) 79.0(1,7),157.5	(1)
			101	(2). 4(Z)		MnC ₇ P	224	180.9(10,17) 218.5(8,32) 246.8(2)		ª	
Mn ₃ (CO),12(µ2-H),3	5	' Id	2 28 14 28	22(1) 36(2) 99(1)	105.2(1) 118.5(1) 96.9(1)	MnC ₄ H _s	ပ္စင်္	178.9(12,34) , 185.4(14,20) 172(12,11)	309.9(2) 310.7(2) 312.6(2)	$\begin{array}{c} 60.0(1,5)\\ 131(7,18)\\ \mathbf{j}\end{array}$	92
[Mn(CO)4(µ2-PH2)]3	8	P2./n	2 126 126)5. 2(2) 14.8(2) 34.2(2)	90 109.14(2) 90	MnC4Pª	20 4	183.8(2,21) 238.1(1,7)	430.3(1) 435.6(1)	- 130.0(-,2.6)	77 k
[Wn4(CO)154]	E	P2,/c	4	28.8(5) 18.4(2)	96.02(8)	MnC _a S _a (2x)	So So	179.4(9,17) 235.0(2,43)		- 114.03(8,17.29)	93
			101	(67)7.01		MnC ₄ S ₂	20°S	184.1(9,36) 234.3(3,2)		13	
						MnC _s S	20 S	187.2(9,37) 238.2(2)			
[Mn' ₄ (CO), ₂ (µ ₃ -F/OH) ₄] .(C6H6)2	U	Pn3m	2 112	27.71(5)		MnC ₃ (F/O) ₃	00 F/0 ^c	180.2(3) 205.2(3)	319.9(1)	- 102.4(1) m	94
[Mn ₆ (CO) ₈ {μ-OP(OEt) ₂ } ₈]	B	P2,/n	1202	20.1(7)	95.57(3)	Mn ^{tr} O _s (3x)	0	215(-,14)	388 398	not given	36
			5	(6)0.8		Mn ^r C ₃ P ₃ (3x)	о С	not given 228(-,3)			

Footnotes for Table 5

- The mean value for chemically identical angle or distance. The first number in parenthesis is the e.s.d. and the second is The chemical identity of coordinated atom or ligand. the maximum deviation from the mean. The bridge atom (ligand). æ م c
 - C-Mn-C = 88.6(1,1.4)°; C-Mn-O = 102.3(7,5.3)° and O-Mn-O = 70.7(5)°. C-Mn-C = 88.8(9,1.9)°; C-Mn-O = 97.9(8,5.7)° and O-Mn-O = 80.8(5,12.8)°. ÷
 - d_2
- C-Mn-C = 83.6(8)°, C-Mn-O = 99.3(7,5.7) and 170.6(8,5.3)°; O-Mn-O = 76.3(5,7.5)°; C-Mn-P = 87.8(9,2.9)°; 97.5(5,5.3); 169.6(3)°. da,
 - ő
 - C-Mn-C = 89(2,4)°; C-Mn-O = 103(2,5); 161(2,1)°; O-Mn-O = 66(1)°. C-Mn-C = 86(2,3)°; C-Mn-O = 103(2,1); 167(2,3)°; O-Mn-O = 65(1,1)°; C-Mn-F = 94(2,4); 179(1,2)°; O-Mn-F = 79(1,1)°; $Mn-F-Mn = 93(1)^{\circ}$. e,2
- <u>ت</u> بي ا
- C-Mn-C = 84(2,7)°; C-Mn-O = 106(2,8); 166(2,3)°; O-Mn-O = 68(1)°. C-Mn-C = 90(2,7)°; C-Mn-O = 98(2,4); 168(2,4)°; O-Mn-O = 71(1,2)°; C-Mn-I = 84(1,3); 172(1,3)°; O-Mn-I = 91(1,3)°; $Mn-I-Mn = 60.9(2)^{\circ}$
 - At 238K.
- There are two crystallographically independent anions.
 - C-Mn-C = 92.9(16,5.3) and $167.0(17,2.2)^{\circ}$.
 - C-Mn-C = 88.9(15) and 180.0(00)^o
- C-Mn-C = 92.8(16,5.1) and $167.4(14,4)^{\circ}$.

- C-Mn-C = 90.0(15) and 180.0(0)°. C-Mn-C = 90.9(15) and 180.0(0)°. C-Mn-C = 90.9(4,9.6) and 177.6(5,6)°, C-Mn-P = 97.9(3,24.5) and 150.6(3,7.5)°. C-Mn-C = 89.6(5,4.5)°; C-Mn-P = 110.4(3,1.3) and 153.0(3)°. C-Mn-C = 90.7(6,3.7) and 177.2(6,4)°; C-Mn-H = 80(4,7) and 171(4,6)°; H-Mn-H = 108(6,10)°. C-Mn-C = 90.9(1,3.7) and 177.9(1,1.6)°; C-Mn-P = 89.5(1,6.0) and 176.7(1,4)°; P-Mn-P = 89.1(1,1.8)°. C-Mn-C = 90.9(1,3.7) and 177.9(1,1.6)°; C-Mn-P = 89.5(1,6.0) and 176.7(1,4)°; P-Mn-P = 89.1(1,1.8)°. C-Mn-C = 91.2(4,7.9)°; C-Mn-S = 96.9(3,11), 167.8(3,8.7)°; S-Mn-S = 52.82(7,8) and 86.9(8,5.62)°. C-Mn-C = 90.9(4,3.0) and 174.7(4,2.7)°; C-Mn-S = 88.7(3,3.8) and 177.7(3,1)°; S-Mn-S = 90.08(8)°.
- $76.1(1)^{\circ}$; C-Mn-C = 88.5(1)^{\circ}; C-Mn-F(O) = 97.5(1)^{\circ} 0 0-**Mn-**0

Figure 5. Structure of $[Mn(CO)_4]_3(\mu_3 - N_2Me)$ Reproduced with permission from Angewandte Chemie [90]

An X-ray investigation of red $(Ph_4As)[Mn_3(CO)_{14}]$ [91] shows that the geometry of the $[Mn_3(CO)_{14}]$ anion is essentially D_{423} , with the three manganese atoms collinear $(Mn-Mn-Mn = 180.0(0)^{\circ})$. The central $Mn(CO)_4$ unit is staggered with respect to the other two sets of equatorial CO groups. The Mn-Mn distance of 288.3(4) pm indicates a single bond between the neighbouring manganese atoms. The mean Mn-C bond distance increases with increasing coordination number, 179.5 (MnC_4) versus 180.6pm (MnC_5) (Table 5).

Difference Fourier techniques have been applied to locate the hydrogen atoms in $Mn_3(CO)_{12}(\mu_2-H)_3$ [92]. The molecular structure of the trimer consists of an equilateral array of manganese atoms, each with four terminal CO groups. The hydrogen atoms lie in the equatorial Mn plane in symmetrically bridging positions. The bond distances and angles are given in Table 5.

The molecule of $[Mn(CO)_4 (\mu_2-PH_2)]_3$ [77] consists of the six membered ring where manganese atoms are bridged by PH₂ groups. The three manganese atoms have the same chromophore, MnC_4P_2 .

There are two examples [93,94] of tetranuclear manganese carbonyls. The structure of red $Mn_4(CO)_{15}S_4$ is shown in Figure 6. Two disulphide ligands link the four manganese atoms which each achieve an approximate octahedral

Figure 6. Molecular Structure of Mn_e(CO)₉{OP(OEt)₂}₈ Reproduced with permission from Z. Naturforsch. [93]

arrangement of ligands. The structure of the other tetranuclear [94] consists of a cubane type of cluster with $Mn(CO)_3$ units at one set of corners and fluoro or hydroxy groups at the other set. With its very high crystallographic symmetry $\overline{43m}$ it is unique for clusters of this type.

The only example of a hexanuclear, $Mn_{s}(CO)_{s} [OP(OEt)_{2}]_{s} [95]$, is shown in Figure 7. There are two different types of manganese atoms, the interior three Mn(II) atoms each coordinate in approximately trigonal planar fashion MnO_s, and three exterior Mn(I) atoms each bond to three phosphorus atoms and three carbonyl groups $MnC_{3}P_{3}$ (Table 5).

It is apparent from the data in Table 5 that the mean Mn-L distance increases with coordination number. For example, the mean Mn-P distance is: 227.8 pm (five coordinate) <229.0 pm (six coordinate) <246.8 pm (seven coordinate). The mean Mn-L(bridge) distance increases with increasing van der Waals radius of the ligand atom: $172pm(H) <195 pm(F) <202.3 pm(OEt) <238.1 pm(PH_2) <279.1 pm(I)$. Interestingly, the mean Mn-CO distance of 180.1 pm is about 0.9 pm smaller than that of the binuclears at 181.0 pm (Table 4).

There are two crystallographically independent $[Mn_3(CO)_{14}]^-$ anions which

Figure 7. Molecular Structure of $Mn_{e}(CO)_{e}{OP(OEt)_{2}}_{e}$ Reproduced with permission from J. Organomet. Chem. [95]

differ mostly in degree of distortion [91], representing an example of distortion isomerism.

(D) Heteronuclear Carbonyl Compounds

1. Hetero-binuclear derivatives

Structural data for these derivatives are summarized in Table 6. There are six distinct types of bridging, a distorted octahedral manganese singly bonded to another hetero-central atom being the most common [96-101,108]. The mean Mn-M distance increases with the covalent radius of M: 240.7 pm (Si, 118 pm) <243.2 pm (Ge, 122 pm) <255.7 pm (Hg, 138.6 pm) <258.9 pm (Sn, 140 pm). The mean Mn-CO distance follows the same trend (Table 6).

The molecular geometry of red $Mn(CO)_3$ (dmp)PdBr [102] consists of a bimetallic MnPd unit spanned by two bridging mutually trans dmp ligands, bringing the two metal atoms to within 281.0(2) pm.

Molecular structures of yellow α - and orange β -Mn(CO)₃Br(triphos)Cr(CO)₅ [103] are shown in Figure 8. The overall geometry of both isomers consist of two metal atoms (Mn and Cr) linked together by the triphos ligand. The coordination

Figure 8. Molecular Structure of a- and B- Mn(CO)₃Br(triphos)Cr(CO)₅ Reproduced with permission from Inorg. Chem. [103]

around the manganese(1) atom in both structures is essentially octahedral (MnC_3P_2Br) with three carbonyl groups cis to each other.

The essentially octahedral environments around manganese(I) atoms in the two isomers differ mostly by degree of distortion, another example of distortion isomerism.

The fourth type of bridging involves one ligand atom, for example phosphorus in $Mn(CO)_4(PPh_2)_2Fe(CO)_4$ [104], arsenic in $Mn(CO)_4(PPh_3)(AsMe_2)Fe(CO)_4$ [105], and oxygen in $Mn(CO)_5(OTeF_3)$ [109]. The arsonium derivative [105] exists in two isomeric forms which differ in the cis-trans arrangement of the P and As atoms on manganese, leading to different degrees of distortion.

The fifth type is found in $(Mn(CO)_4(AsMe_2)_2Fe(CO)_4]^+[Mn(CO)_4CI)(AsMe_2)_5Fe(CO)_4]^-$ [106], where two bimetallic MnFe units are bridged by two AsMe₂ ligands in the cation and only one AsMe₂ ligand in the anion.

A sixth type of bridging involves three atoms, for example in $Mn(CO)_3(\mu-H)(\mu,\mu,-dtal)Fe(CO)_3$ [107] the bridging involves two nitrogen atoms of dtal and a hydrogen atom. The Mn-Fe distance of 253.93(9) pm is much shorter than that found in $Mn(CO)_4(PPh_2)Fe(CO)_4$ [104] which is 282.5(5) pm.

Compound	Crrystal Class	Space Group	22	a[pm] b[pm]	a[0] B[0]	Chromo- phore	M-L [pm]	L-Mn-L L-Mn-L'	Ref
(tpy)Cd{Mn(CO) _s }_s	E	P2,/c	4	ct pmJ 915.8(15) 1889.5(26) 1696.0(17)	111.38(9)	MnC _s Cd(2x)	OC ^b 179.5(21,46) Cd ^d 278.0(5,20)	93.4(9,13.6) 82.9(7,6,7),176.1(7,1.9) 132.4(2) ⁶	110
(bpy)Cd{Mn(CO) _a } _a	B	P2,/n	4	1442.9(15) 1580.5(16) 1042.3(10)	94.62(2)	MnC _s Cd(2x)	OC _d 178.2(15,42) Cd ^d 268.3(3,3)	93.4(7,8.2),164.4(7,7.2) $82.3(5,\frac{1}{6},9),177.0(5,5)$ 127.7(2)	111
(phen)Cd{Mn(CO) _a } ₂	E	P2,/n	4	1457.4(15) 1625.8(16) 1045.3(10)	96.87(2)	MnC _s Cd(2x)	OC _d 177.5(21,46) Cd ^d 268.1(4,6)	93.5(9,9.3),164.1(9,8.8) 82.2(7, 6.1),177.5(7,2.1) 131.4(2)	111
(diglyme)Cd{Mn(CO)_3)2	8	P2,/n	4	1016.1(10 2301.0(20) 971.8(9)	91.80(2)	MnC _s Cd(2x)	OC _d 178.8(11,33) Cd ^d 271.1(2,4)	$\begin{array}{c} 92.9(5,7.2)167.0(5,7.8)\\ 83.6(4,4.1),176.3(4,1.2)\\ 135.9(1)^{6}\end{array}$	112
Hg{Mn(CO) _a } ₂	£	- 14	1	632.5(2) 947.9(2) 633.0(2)	90.86(2) 81.66(2) 97.44(2)	MnC _s Hg(2x)	OC 185.4(15,14) Hg ^c 260.8(2)	89.5(7,9) 84 ₆ 7(5,7),178.9(5) 180 ⁶	113
Hg(Mn(CO) _a) ₂	tr	- 14	-	632.96(11) 948.37(15) 633.32(11)	94.478(6) 81.668(6) 90.816(6)	MnC ₅ Hg(2x)	OC _d 184.1(16,31) Hg ^d 261.0(2)	92.6(7,3.9),168.7(7,1.1) 84.3(5,8),179.3(5) 180.0 ⁰	114
(µ-GeMe ₂)(µ-CO){Mn(CO) ₄ } _а ⁶	8	C2/c	œ	874.2(2) 1421.5(4) 2722.1(7)	95.05(2)	MnC ₅ Ge(2x)	OC d182.8(9,41) OC d209.6(8,59) Ge d 245.5(2,23)	90.7(4,6.3),177.2(4,1) 13(5) ^C	115
PtMn2(µ2-PPh2)2(CO)8	t,	- 14	7	1024.0(5) 1081.2(4) 1748.3(8)	94.89(3) 101.41(5) 112.14(3)	MnC_PPt(2x)	$\begin{array}{c} \text{OC} & 182.0(11,33) \\ \text{Pd} & 223.9(3,2) \\ \text{Pt}^{d} & 274.4(1,3) \end{array}$	91.90(43,7.36),175.15.47 not given 159.54(6) ^c	1,1.33) 116, 117

Table 7 Structural data for hetero-trinuclear manganese carbonyl compounds^a

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	α[°] B[°] X [°]	Chromo- phore	M-L [pm]	L-Mn-L L-Mn-L' [°]	Ref
PtMn ₂ H(µ ₂ -PPh ₂) ₃ (CO) ₉	tr	14	5	1094.1(2) 1974.0(5) 1072.0(2)	96.13(2) 105.08(2) 105.22	MnC_PPt	OC 184.5(18,18) P ^d 230.6(4) Pt 284.7(2)	91.36(71,5.18),179.61(84) f 157.26(6) ^C	117
						MnC4P3	OC ₁ 182.8(16,21) P ^d 236.7(4,12)	91.93(72,4.24),174.76(71) 90.56(42,6.14),170.40(42,2.54) g	
(py) _a Pt{Mn(CO) _a } _a							data	unavailable	118
HRe_Mn(CO),4	E	P2,/n		931(1) 1582(2) 1438(2)	106.25(5)	MnCsRe	OC 182(3,6) Re 296.0(3)	92.2(1.4,4.5),170.5(1.4,1.1) 85.3(1.0,2.6),178.0(9)	119
(OC) _a CoFe(μ-CO).	8	P2,	2	859.6(2)		MnC_PFe	OC 177-187(1)	not given	
120 . (μ-Ρbu)Mn(CO),				1451.8(2) 875.5(1)	111.01(1)		OC ^C 199(1) P ^C 216.4(5) Fe 269.5(7)	Ч	

The mean value for chemically identical angle or distance. The first number in parenthesis is the e.s.d. and the second is the maximum deviation from the mean. The chemical identity of coordinated atom or ligand. The value of Mn-M-Mn angle. The bridge atom (ligand). Mn-Mn = 285.4(2)pm, and Mn-C-Mn = 85.8(2)°, Mn-Ge-Mn = 71.1(0)°. P-Mn-Pt = 85.00(39) 164.30(47)° and P-Mn-Pt = 51.04(6)°. P-Mn-Fe = 59.5(1)°.

ര

പറപം മപ

Table 7, cont. (2)
2. Hetero-trinuclear derivatives

The data for these derivatives are listed in Table 7, and there are three distinct types depending on the metal atoms involved. Most examples involve two manganese atoms with one heteroatom which most commonly serves as a bridge between them [110-114]. The Mn-M-Mn bridge angles are $132.4(4)^{\circ}$ [110], $127.2(2)^{\circ}$ and $131.4(2)^{\circ}$ [111], $135.9(1)^{\circ}$ [112] and 180° [113,114]. The mean Mn-Gd distance of 271.4 pm is about 10.5 pm greater than Mn-Hg (260.9 pm) which is consistent with the "lanthanide contraction". The mean Mn-C bond length elongates with the opening of the Mn-M-Mn angle, for example 178.5 pm and 132° for M = Ge [110-112], and 184.3 pm and 180° [113,114] for M = Hg.

Red-orange $[Mn(CO)_4]_2(\mu-CO)(\mu-GeMe_2)_2$ [115] contains each manganese atom in approximately octahedral environment sharing an edge defined by the germanium (Mn-Ge = 245.5(2,23) pm and bridging carbonyl (Mn-C = 245.5(2,23) pm. The Mn-Mn bond distance of 285.4(2) pm is the shortest in the heterotrinuclear series, and indicates a single metal-metal bond. The mean Mn-CO(bridge) distance of 209.6 pm is about 26.8 longer than the Mn-CO(terminal) value, as expected.

In another red-orange derivative, $PtMn_2(\mu_2-PPh_2)_2(CO)_B$ shown in Figure 9, each manganese atom is bonded to four terminal carbonyls (Mn-C = 182.0(11,33)pm), to the platinum atom (Mn-Pt = 274.4(1,3)pm), and to a P atom (Mn-P = 223.9(3,2)pm. The Mn-Pt-Mn bridge angle is 159.56(4)° [117].

Figure 9. Structure of $PtMn_2(\mu_2-PPh_2)_2(CO)_9$ Reproduced with permission from J. Organomet. Chem. [117]

The three metal atoms in $HRe_2Mn(CO)_{14}$ [119] are arranged in a cis configuration, the angle at the central rhenium atom Re..Re-Mn being 98.09(7)°. The Mn-Re distance of 296.0(3) pm indicates a single bond.

Examination of the data in Table 7 shows the Mn-CO(terminal) bond distances in the range 174.0 to 188.0 pm with a mean value of 181.6 pm. The Mn-CO(bridge) distances are larger, 199.0 to 215.4 pm (mean 206.0 pm). The mean Mn-CO(terminal) distance of 181.6 pm found for the hetero-trinuclear compounds is shorter than those found in hetero-binuclear compounds (183.1 pm). The Mn-Mn bond distances for both types of derivative are comparable.

3. Hetero-polynuclear compounds

The crystallographic and structural data for these compounds are given in Table 8. There are few examples of hetero-tetranuclear derivatives [121-130], the structure of red $ClSn[Mn(CO)_4(PPh_3)]_3$ [122] being shown in Figure 10 as a representative example. In this case the "central" atom is in fact the tin, and the three $Mn(CO)_4(PPh_3)$ groups plus the chlorine atom occupy the corners of a distorted tetrahedron around it with a mean Mn-Sn bond distance of 271.3(1,8) pm. A similar structure has been found in related SnMn₃ derivatives [121, 123, 124]. It is noted that as the PPh₃ ligands replace the stronger π -acceptor CO [122, 123] on the manganese trans to the tin, the Mn-Sn bond length is shortened compared to those derivatives with no phosphine ligands [121, 124].

Figure 10. Structure of $CISn\{Min(CO)_4(PPh_3)\}_3$ Reproduced with permission from Acta Crystallogr. [122]

Table 8 Structural data for	hetero-po	lynuclea	T MAL	ganese carbo	unyt compour	uds ^a			
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	[md]	L-Mn-L L-Mn-L [+] Mn-M-Mn	Ref
BrSn(Mn(CO) _{6.3}	E	P2,1c	4	1196.3(5) 1310.6(5) 1490.4(5)	90.73(5)	MnC ₆ Sn(3x)	OC ^b 184.1(11,32) Sn ^c 274.0(2,18)	91.61(48,5.75) 86.75(34,7.43),173.64(36,3.27) 116.41(5,2.25)	121
ClSn{Mn(CO)4(PPh3)}3	ţ	, Iq	2	1341.3(3) 2276.8(4) 1091.6(3)	85.91(10) 89.76(10) 107.74(10)	MnC4PSn(3x)	$\begin{array}{c} \text{OC181.0(7,26)} \\ \text{P} 229.0(2,14) \\ \text{Sn}^{\text{C}} 271.3(1,8) \end{array}$	89.8(3,6.6),171.0(3,3.5) 86.3(2,7.3) d 116.39(5,2.22)	122
BrSn{Mn(CO)4(PPha)}3	t,	' H	8	1351.5(3) 2270.9(4) 1100.4(3)	86.15(10) 90.05(10) 108.33(10)	MnC ₄ PSn(3x)	$\begin{array}{c} \text{OC181.9(7,23)} \\ P 228.6(2,12) \\ \text{Sn}^{2} 271.8(1,10) \end{array}$	89.7(3,7.0),170.9(3,3.5) 86.3(3,6.6) e 116.26(3,2.17)	123
ClSn{Mn(CO)。}3 ^f	E	Ра	1 27	1795 908 1502	107.55	MnC _a Sn(3x) MnC _a Sn(3x)	OC 181(1) Sn ^C 274.0(6, 20) OC 181(1) Sn ^C 273.5(6, 32)	not given not given 116.5	124
Fe _a Mn(CO) _a (μ _a -5)(μ ₄ -5). Mn(CO) ₆	E	P2,/n	4	912.5(1) 1340.2(3) 1871.6(4)	90.00(1) 91.672(1) 90.039(2)	MnC ₆ S H. MnC ₃ S ₂ Fe	0C179-185 a-S ^C 238.4(3) 0C176-185 a-S ^C not given Fe ^C 271.4(3)	not given 175.3(5) -	125
[Rh _a (tm4-br) ₄ Mn _a (CO) ₁₀]. .(PF _e) ₂ (Me ₂ CO) ₂		Pna2	4	1826.5(11) 2318.5(7) 1783.6(4)		MnC _s Rh(2x)	OC 277(4,19) Rh ^C 289.4(5,11)	not given 86(1,3),177(2,1)	126
Pd _z Mn _z (CO) _o (dppm) _z	E	P2,/c	4	1756.1(7) 2131.9(8) 1946.1(8)	113.50(2)	MnC " Pđ	OC 180(2,6) Pd ^C 282.1(2)	not given	127
						MnC₄PPd₂	$\begin{array}{c} \text{OC} 183(2,3)\\ \text{OC}^{1}193(2,1)\\ \text{P} 229.2(3)\\ \text{Pd}^{\text{C}} 263.9(1,59) \end{array}$	not given 99.5(1) g	

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] Y[°]	Chromo- phore	M-L [mg]	L-Mn-L L-Mn-L [°] Mn-M-Mn	Ref
(OC) _a Mn ₂ (µ ₂ -PPh ₂) ₄ Pt ₂	E	P21/c	4	2410.6(8) 1200.2(4) 2084.1(7)	93.39(2)	MnC ₄ PPt	OC 186(1,6) P ^C 224.2(4,1) Pt ^C 271.4(2,4)	91.6(6,6.6),178.5(6)	117
Mnª(CO) _a (µ-SiPh _a) _a ^h	8	A2/m	2	1178.8(15) 1048.0(19) 1374.4(22)	117.37(6)	MnC ₄ Si ₂	OC 182.9(5,24) Si ^C 240.2(2)	91.6(3,4.8),177.7(3) h 73.39(6)	128
Mn's(CO)a(µ-Br)2(Se2Phs)	8	C2/c	4	1161.8(3) 1057.6(3) 1945.6(4)	106.94(2)	MnC ₃ Br ₃ Se	OC 181(2,1) Se 247.8(3) Br ^C 254.1(3,1)	90.7(9,7) 91.5(7,2.9),176.6(7,1.2) i 92.8(1)	129
Mn' ₂ (CO) ₆ Br ₂ (Te ₂ Ph ₂)	or	Pbca		2238.8(8) 913.1(4) 2304.4(8)					129
{(tpp)SnMn(CO)_4.HgMn(CO)_ .(CH_2Cl_2)_0.5	ا ئ	- 14	5	1478.5(35) 1487.0(30)	92.26(21) 111.33(16)	MnC _a Hg	OC not given Hg ^C 265.9(11)		130
				(77)£.8501	(07) 1 C • CO I	MnC_SnHg	OC not given Sn 255.4(7) Hg ⁰ 257.9(11)		
Mn(CO) _s Si(SiMe _a)a	tr	- IA	73	900.2(2) 965.5(2) 1563.9(3)	83.66(1) 105.65(1) 114.61(1)	MnC _s Si	OC 182(2,3) Si ^C 256.4(6)	91.3(1,5.3),174.0(2,8) 87.4(6,4.1),175.3(7) -	131
[{Mn(CO) ₆ } ₂ In(μ-CI)] ₂	tr	- IA	1	1062.2(3) 1039.3(3) 872.2(3)	87.56(2) 95.59(2) 124.58(2)	MnC ₅ In	OC 184.3(7,23) In ^C 266.5(1,6)	91.91(31,6.69) 85.96(22,6.78),175.80(24,1.24) 123.59(3)	132
[{Mn(CO) ₅ } ₂]n(µ-Br)] ₂	tr	- 14		1063.4(4) 1039.6(8) 882.3(1)	87.79(2) 95.33(1) 124.32(1)	MnC _a In	OC184.0(7,21) In ^C 266.4(1,6)	91.99(32,6.50) 85.75(22,6.15),175.83(23,75) 124.97(3)	132

Table 8, cont. (2)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] 8[°])(°]	Chromo- phore	M-L [pm]	L-Mn-L L-Mn-L [''] Mn-M-Mn	Ref
Mn(CO)s} a In(μ-I)]_	tr	Pī	1	1064.9(2) 1045.7(2) 907.3(1)	87.67(1) 95.07(1) 123.79(1)	MnC _s In	OC 183.8(8,21) In ^C 267.2(1,6)	92.00(38,6.32) 85.75(26,5.05),175.56(29,6) 126.37(4)	132
Mn _s (CO) _s (µ-Ge(Br)Mn(CO) _s)	, B	P21/c	24	876.2(4) 1212.4(4) 1542.5(4)	62.89(9)	MnC ₅ Ge MnC4Ge2	OC 186.1(11,25) Ge ^C 250.2(2) OC 183.4(10,34) Ge ^C 248.1(2,1)	90.8(5,2.9) 88.5(4,3.7) 131.12(7,76) 90.1(4,5.1),177.7(4) 86.5(3,8.7),173.3(3,1.2) 75.20(5)	133
Mn _a (CO) _a {µ-Ge(I)Mn(CO) _a } _a ^k	8	P2,/c	64	898.7(2) 1219.0(3) 1565.9(3)	61.4(1)	MnC _s Ge MnC _s Ge ₂	OC 186.5(11,21) Ge ^C 251.9(2) OC 183.5(11,25) Ge ^C 249.6(2,2)	90.8(5,3.0),176.5(5,4) 88.3(4,2.9),178.1(4) 130.7(1,8) 90.6(5,5.2),177.8(5) 86.4(3,9.1),173.8(3,9) 72.0(0)	134
Mn _a (CO) _n {µ-GaMn(CO) _s } _a ¹	ţ	14,/a	æ	1350(2) - 2826(3)		MnC _s Ga MnC ₄ Ga ₃	OC 184.4(5,12) Ga ^C 244.5(1) OC 181.7(5,16) Ga ^C 245.5(1,6)	91.97(20,4.23) 85.83(15,3.29) 141.29(2,2) 92.19(20,3.31 86.56(14,5.47) 78.86(2)	135
Mn _a (CO) _s {µ-InMn(CO) _s } _a ^m	ţ	I4,/a	x	1372(2) - 2854(3)		MnCsIn MnCalinz	OC 184.4(5,16) In ^C 259.6(1) OC 182.5(5,24) In ^C 261.0(1,0)	92.13(23,4.01) 85.42(16,2.53) 141.27(2,20) 92.85(23,3.00) 85.93(17,6.02) 76.35(2)	135
H ₂ Sn ₂ {Mn(CO) ₆ }4	E	C2/c	4	1571(5) 1718(5) 1251(5)	107.3(2)	MnC _s Sn	OC 182(4,9) Sn ^C 270.3(5,28)	92.1(16,3.7),171.0(16,4.7) 85.5(11,7.2),174.7(10,4) 119.8(1)	136

Table 8, cont. (3)

-
~
_
_
_
_
_
_
<u> </u>
-
<u> </u>
•
_
<u>~</u>
~
d 1
eu.
e
e e
He
ble
ble
able
able
able
Fable
Table

Ref	121 () (,1.87)	137 1,1.49)	138	139	140
L-Mn-L L-Mn-L [°] Mn-M-Mn	91.29(21,2.84) 87.31(14,2.68),176.86(16 132.75(2) 91.30(19,3.42) 85.99(14,8.81),173.10(1 72.17(2)	91.27(26,2.37) 87.35(18,3.06) 132.22(3) 91.23(24,3.50) 86.00(17,8.57),173.00(1) 71.91(2)	91.3(4,4.2),174.2(4,1.0) 87.3(3,4.1),177.3(3,2.4) 119.17(4,50)	92.0(5,3.5),171.3(5,2.6) 85.7(3,2.8),179.0(3) -	86(1) 98(1,4),173(1)
M-L. [mg]	OC185.1(5,30) Sn ^C 262.6(1) OC182.9(5,29) Sn ^C 262.4(1,4)	0C185.4(6,21) Sn ² 263.4(1) 0C183.2(6,25) Sn ² 262.8(1,3)	OC184.2(9,17) Sn ^C 272.7(1,23)	OC184.7(9,20) In ^C 263.5(1)	00184.3(27) 02200.1(12)
Chromo- phore	MnC _s Sn MnC ₄ Sn ₄	MnC ₅ Sn MnC ₄ Sn ₄	MnC _s Sn	MnC _s In	MnC _a O _a
a[°] B[°] Y[°]	115.98(10)	63.54	108.10(3)		64.74(2)
a[pm] b[pm] c[pm]	873.3(2) 1230.0(2) 1546.4(2)	881.7 1237.6 1551.1	1659.1(5) 1245.5(2) 1721.4(8)	1328.3(2) 3012.3(3)	1669.6(4)
N	67	5	4	8	69
Space Group	P2,/c	P2,/n	P2,/c	14,/a	R3c
Crystal Class	e 4	5 ° a	8	ţ	trg
Compound	Mn _a (CO) _s {µ-Sn(Cl)Mn(CO) _s }	Mn _a (CO) _e {µ-Sn(Br)Mn(CO) _e }	Br _a Sn _a {Mn(CO) _s }_4	Fe _s (CO) _s (InMn(CO) _s)	(n-Bu ₄ N) ₃ [(OC) ₃ Mn. .(cis-Nb ₃ W ₄ O. ₁₈]

The mean value for chemically identical angle or distance. The first number in parenthesis is the e.s.d. and the second is the maximum deviation from the mean. đ

The chemical identity of coordinated atom or ligand.

The bridge atom.

Ge-Mn-Ge = $108.0(1)^{\circ}$. Ga-Mn-Ga = $103.14(2,32)^{\circ}$. In-Mn-In = $103.64(2,0)^{\circ}$. $Ge-Mn-Ge = 107.80(6)^{\circ}$. Mn-Mn = 292.3(2)pm; G Mn-Mn = 293.4(2)pm; G Mn-Mn = 305.2(1)pm; G Mn-Mn = 322.7(1)pm; Ir Mn-Mn = 309.1(1)pm; Si The value of C-Mn-Sn angle; C-Mn-P = $94.0(2,5.3)^{\circ}$; Sn-Mn-P = $170.8(1,3.7)^{\circ}$. The value of C-Mn-Sn angle; C-Mn-P = $94.0(2,5.7)^{\circ}$; Sn-Mn-P = $170.39(6,3.34)^{\circ}$. There are two crystallographically independent molecules. There are two crystallographically independent molecules. The value of Pd-Mn-P angle. The value of C-Mn-Br angles; C-Mn-Sn = 287.1(2)pm. The values of C-Mn-Br angles; C-Mn-Se = 90.0(6,3.1) and $175.8(7)^{\circ}$; o Se-Mn-Br = $89.3(1,2.5)^{\circ}$; and Br-Mn-Br = $83.4(1)^{\circ}$.

 $Sn-Mn-Sn = 107.83(2)^{\circ}$. $SN-Mn-Sn = 108.09(3)^{\circ}$.

Mn-Mn = 308.6(1)pm;

There are examples [125-129] containing two manganese and another two central atoms: iron [125], rhodium [126], palladium [127], platinum [117], silicon [128], or selenium [129]. From the bridge viewpoint, the data fall into several groups. For example in the mixed metal, dark blue $[Rh_2(tm4-br)_4Mn_2(CO)_{10}]$ - $(PF_{e})(Me_2CO)_2$ [126], the dirhodium cation has D_{2d} symmetry capped on each end by a Mn(CO)₅ unit with a mean Mn-Rh bond distance of 289.4(5,11) pm, and Mn-Rh-Mn bond angles of 179.3(1)° and 177.0(1)°.

Another molecule [129] consists of two hexacoordinated manganese(I) centres sharing a common edge composed of two bridging bromides plus a bidentate Se-Se bridge. Three fac- carbonyl groups occupy the remaining positions.

There is an example (Table 8) with two different heteroatoms, $[(tpp)SnMn-(CO)_4HgMn(CO)_5](CH_2Cl_2)_{0.5}$ [130]. This molecule has an Sn-Mn-Hg-Mn unit, with the Sn-Mn-Hg part bent at a right angle and the Mn-Hg-Mn part almost linear.

The hetero-hexametallic compounds are of five types. In $({Mn(CO)_5}_2In(\mu-X)_2 [132]$, the central cluster consists of a planar In_2X_2 ring with each indium bonded to two manganese atoms, giving a distorted tetrahedral environment around the indium. The manganese has a distorted octahedral environment with the MnC_5In chromophore.

The structure of monoclinic $Mn_2CO_8\{\mu-Ge(Br)Mn(CO)_5\}_2$ [133] is shown in Figure 11. The central fragment of the molecule consists of a planar Mn_2Ge_2 rhombus with a Mn-Mn distance of 292.3(2) pm across, which is comparable to the value of 293.4(2) pm of the analogous iodo derivative [134]. Both Mn-Mn distances are shorter than those found in $Mn_2CO_8\{\mu-Sn(X)Mn(CO)_5\}_2$ of 309.1(1)pm(X = C1) [121] and 308.6(1)pm(X = Br) [137]. This Mn-Mn distance increases with the covalent radius of the bridging hetero-metal atom, 122 pm for Ge and 140 pm for Sn.

In another two isomorphous examples $Mn_2CO_8\{\mu-Mn(CO)_5\}_2$, where M = Ga or In [135], there is a planar Mn_2M_2 ring in which the Mn-Mn distance increases with the covalent radius of the bridging M atom, from 305.2(1)pm(Ga = 125 pm) to 322.7(1) pm (In = 142 pm).

Orange $H_2Sn_2\{Mn(CO)_5\}_4$ [136] and dark-red $Br_2Sn_2\{Mn(CO)_5\}_4$ [138] have the two connected Sn atoms in tetrahedral environments with two $Mn(CO)_5$ groups and one hydrogen [446] or bromine atom [448]. Each manganese atom is octahedrally surrounded by five carbonyl ligands and a tin atom.

The fifth type is represented by $Fe_2(CO)_{s}{InMn(CO)_{s}}_{z}$ [139] which has two types of hetero-metal atom.

Two crystallographically independent molecules, differing by degree of distortion, have been found in $ClSn{Mn(CO)_5}_3$ [124]. There are also examples

lligands ^a
donor
carbon
unidintate
with
compounds
manganese
for
data
Structural
Table 9

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore		Mn-L I [pm] t	Mn-L cis- [°] rans- {°]	Ref
Mn ¹¹ (CH ₂ CMe ₂ Ph) ₂ (PMe ₃) ₂	E	C2/c	4	1888.1(4) 933.0(6) 1635.4(2)	92.91(2)	MnC ₂ P ₂	ъ Ср	214.9(6,0) 263.3(4,0)	υ	141
Mn ¹ (CO) _n (CH ₃)		Pcmn	4	636.6(2) 1115.1(3)		MnC _s				142
Mn¹(CO)₅(CH₃)				(१)с.св11		MnC _s	0C H _a C	184.0(4,20) 218.5(11)	94.7(1.0)	143
Mn'(CO) _s (COCOMe)	B	2/m	4	632.0(3) 634.0(3) 2997.1(13)	119.48(3)	MnCa	C D	not given not given	92.2-93.5	144
Mn¹(CO)₅(n¹-C₂Cl₅)	8	P2,/c	4	1370.1(2) 875.8(1) 1332.9(1)	107.78(1)	MnCa	0 0 0	186.3(8,30) 220.4(6)		145
[cis-Mn¹(CO)₄(COMe)(COPh)] .(Me₄N)	e	P2,/c	4	1034.6(5) 1557.8(7) 1209.4(3)	100.99(3)	MnCe	OC MeOC PhOC	181.9(13,34) 204.5(11) 209.1(11)	92.4(5,4.1) 175.3(3) d,	146
Mn¹(CO)₄(acp)	B	C2/c	œ	2594.0(7) 599.3(1) 1711.7(4)	115.63(2)	MnC ₅ 0	0C (acp)C (acp)O	183.7(3,51) 204.2(2) 205.5(2)	91.9(1,4.7) 169.6(1) d2	147
Mn ¹ (CO) ₄ (acf)	ţ	- Id	2	831.0(3) 1057.6(3) 702.6(2)	90.9(3) 105.58(3) 79.26(3)	MnC ₅ 0	0C (acf)C (acf)O	184(4,7) 199(4) 206(4)	not given	148
Mn¹(CO)₄(pfp)	Ħ	P2,/c	4	954.8(4) 915.4(3) 1820.1(6)	102.07(2)	MnC ₅ N	N(qlq) D(pl) D(pl)	179.6(10,32) 206.0(8) 207.0(7)	91.7(4,2.5) 172.2(4) e,	149
Mn(CO)_(dmb)	E	C2/c	8	2736(1) 680.5(4) 1512(1)	93.30(3)	MnC _s N	OC (dmb)C (dmb)N	182.6(5,45) 213.9(3) 207.0(7)	91.0(2,3.9) 170.4(2) e ₂	150

Compound	Crystal Class	Space Group	z	a[pm] b[pm] c[pm]	a[°] B[°] N°]	Chromo- phore	[]ud]		Mn-L cis- {°] rans- [°]	Ref
Mn(CO) ₄ (adm)	8	P2,/n	4	1080.3(1) 1381.2(1) 634.7(1)	93.99(1)	MnC _o N	OC (adm)C (adm)N	180(-,3) 209.0(9) 198.0(9)	not given	151
Mn'(CO)_(bhp)	E	C2/c	œ	2059.1(3) 2051.7(3) 1246.6(2)	140.78(2)	MnC _s N	OC (bhp)C N(dhd)	184.5(7,56) 206.8(5) 212.0(5)	91.88(3,5.3) 167.9(2) e _a	152
Mn(CO),(top)	B	P2,/c	4	1086.5(3) 1350.8(3) 1657.1(3)	100.63(2)	MnCsP	OC (top)C (top)P	181.9(14,34) 209.7(9) 232.4(3)	92.9(5,5.7) 17.29(5) fı	153
Mn(CO)4(dpc)	Ø	C2/c	30	1532.8(29) 1516.6(21) 1585.4(8)	97.28(10)	MnC _s P	OC (dpc)C (dpc)P	180.6(8,26) 216.1(9) 229.5(2)	93.1(3,4.4) 166.6(3) f _a	154
Mn(CO)_(dopc)	e	P2,/c	4	814.2(3) 1055.8(3) 2043.1(6)	100.94(3)	MnCsP	QC (dopc)C (dopc)P	183.3(9,35) 211.0(8) 223.7(2)	93.3(4,4.4) 168.5(3) f ₃	155
Mn(CO)_(doph)	8	P2,/c	4	1079.9(3) 1202.0(2) 1570.0(8)	106.36(3)	MnCsP	OC (doph)C (doph)P	181.0(14,17) 223.5(11) 228.8(4)	93.2(6,4.6) 165.5(6) f4	155
Mn(CO)_(topc)	5	14	2	825.8(4) 967.3(3) 1352.1(5)	92.32(3) 97.89(4) 107.08(4)	MnCsP	OC (tope)C (tope)P	$\begin{array}{c} 182.5(8,32)\\ 218.7(7)\\ 225.2(2)\end{array}$	92.9(4,3.2) 167.7(3) fs	156
Mn(CO)₄(dopo)	8	C2/c	æ	2452.9(10) 1393.8(7) 1246.4(7)	116.58(5)	MnCsP	d(odob) CO CO	182.3(10,39) 220.0(8) 227.9(3)	not given 176.8(4) Ía	157
Mn(CO),(popc)	8	P2,/c	4	913(2) 1371(2) 1646.4(3)	115.39(2)	MnCsP	GC (popc)C Doc)P	not given 221.0(3) 227.1(1)	not given 164.9(2) · f ₇	158

Table 9, cont. (2)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	mn-L [md]	L-Mn-L cis- [°] trans- {º]	Ref
Mn(CO)₄(dph)	ţ	P1	5	912.4(2) 971.8(2) 1313.0(2)	75.07(3) 108.80(3) 111.79(3)	MnC ₅ P	OC 181.7(7,24) (dph)C 220.2(5) (dph)P 232.8(2)	92.2(3,5.2) 165.7(3) fa	159
Mn'(CO) ₄ (CH ₂ COCH ₃)(PPh ₃)	B	P2,/c	4	671.9(1) 1408.3(4) 1477.8(4)	100.63(2)	MnC ₅ P	OC 182.2(6,45) C 221.0(5) P 234.3(1)	93.1(3,5.8) 165.0(3) fa	160
Mn'(CO)4(CH _a)(PPh _a) ^g	0	P2, 2, 2	80	1116(2) 3421(1) 1109(2)		MnC ₅ P MnC ₅ P	$\begin{array}{c} \text{OC} \ 179(8,40) \\ \text{H}_{a}\text{C} \ 230(6) \\ \text{P} \ 231.1(18) \\ \text{OC} \ 174(8,15) \\ \text{H}_{a}\text{C} \ 195(6) \\ \text{P} \ 231.5(18) \end{array}$	93(4,7),169(4) f10 94(3,8),162(3) f11	161
Mn(CO)₄(dpch)	or	P2, 2, 2,	4	1476.6(8) 1529.2(3) 857.0(2)		MnC_P	OC 182.3(9,25) (dpch)C 222.2(10) (dpch)P 230.3(2)	93.7(4,6.2) 164.8(4) f ₁₂	162
Mn(CO)₄(mdpc)	8	P2,/c	4	845.2(2) 1475/8(6) 1598.6(6)	103.78(2)	MnC _s P	OC 180.6(10,16 (mdpc)C 223.7(9) (mdpc)P 228.0(2)) 93.1(4,3.7) 169.7(4) f ₁₃	162
Mn(CO)4(C2Pha)(Br)	e	P2,/c	4	956.4(3) 1201.9(3) 2123.7(8)	107.02(2)	MnC ₅ Br	OC 182-187 C 199 Br not given	not given	163
Mn(CO)₄(dac)	B	C2/c	30	1545.7(6) 1541.9(1) 1593.4(3)	96.49(3)	MnC _s As	OC 182.0(7,18) (dac)C 217.3(8) (dac)AS 237.8(1)	93.0(3,4.8) 167.8(3) h	164
Mn(CO)_(mtpc)	E	C2/c	œ	2434.9(6) 1438.2(4) 1032.1(9)	108.99(4)	MnC ₅ S	OC 183.3(12,25 (mtpc)C 204.9(8) (mtpc)S 240.6(4)) 91.8(5,2.3) 173.0(4) İ	165
Mn ^{1V} (CH ₃) ₄ (dmpe)	8	P2,/c	4	1398.6(2) 1311.2(2) 867.7(1)	96.44(2)	MnC4P2	H _a C 209.9(11,39 P 244.9(4,2)) 93.6(5) j	166

Table 9, cont. (3)

Table 9, cont. (4)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] ¥[°]	Chromo- phore	Mn-L [pm]	L-Mn-L cis- [°] trans- [°]	Ref
Mn(CO) _a (obdp)	ţ	-14	3	930 1169 1065	81.91 96.64 83.72	MnCAOP	OC 178(1,1) (obdp)O 207.0(6) (obdp)P 229.9(2)	not given	167
Mn(CO) _{\$} (obdp)	or	Pbca	xo	1595 1718 1628		MnC ₄ OP	OC 179.1(10,28) (obdp)O 206.7(7) (obdp)P 229.5(3)	not given	167
Mn(CH ₃) ₂ (dmpe) ₂	E	P2,/n	2	957.6(2) 1264.2(3) 895.3(2)	90.13(2)	MnP4C2	H _a C 220(2) P 224.6(5,5)		167a
Mn(CO)(acdpe)(dpe)	£	Id	8	1060(1) 1337(1) 1962(1)	99.1(1) 98.1(1) 112.3(1)	MnP4C2	OC 173 C 205 P 228	82(-,1)	168
Mn(CO) ₃ {OC(H)HCNP}. .{P(OPh) ₃ }	or	Pbca	œ	1806.3(7) 1844.6(8) 2500.3(7)					169
Mn(CO) ₃ (PPh ₃)(msp)	ţ	PI	8	1102.2(7) 1348.5(9) 912.3(6)	94.52(1) 109.90(1) 98.14(1)	MnC4PS	OC 179.4(6,14) (msp)C 206.4(5) (msp)S 231.0(4) Ph ₃ P 238.2(4)	89.2(2,2.6) k	170
[Mn(CO) _a (dpe){(NC) _a C=CP(O) .(OCHMe _a) _a]	m	P2,/n	4	1741.9(4) 1256.0(3) 1816.4(9)	109.10(4)	MnC _a P ₂ O	OC not given C 195.7 O 215.7 (dpe)P 232.0(-,15)	-	171
a The mean value for chemic	ally ident	tical an	gle o	r distance.	The first nu	aber in p	arenthesis is the e.s	d. and the second is the	De max

mumi 4 deviation from the mean.

The chemical identity of coordinated atom or ligand. C-Mn-N = 137.9(1)°; C-Mn-P = 95.3(2) and 112.9(2)°; P-Mn-P = 96.2(5)°. 3) and 170.1(5)°; MeOC-Mn-COPh = 81.2(4)°. OC-Mn-COMe = 88.4(5,3.5) and 173.2(5)°; OC-Mn-COPh = 90.2(5,5.3) and 170.1(5)°; MeOC-Mn-COPh = 81.2(4)°. OC-Mn-C(acp) = 89.3(1,7.5) and 189.1(1)°; OC-Mn-O(acp) = 91.2(1,2.2) and 175.5(1)°; (acp)C-Mn-O(acp) = 79.4(1)°. OC-Mn-C(pfp) = 88.5(4,4.7) and 175.0(4)°; OC-Mn-N(pfp) = 91.9(4,3.7) and 172.6(4)°; (pfp)C-Mn-N(pfp) = 79.4(3)°. OC-Mn-C(dmb) = 88.4(2,4.2) and 174.2(2)°; OC-Mn-N(dmb) = 93.0(2,20) and 172.7(2)°; (dmb) C-Mn-N(dmb) = 80.2(2)°.

Footnotes for Table 9 (continued)

- OC-Mn-C(bhp) = 86.1(2,4.1) and $177.6(3)^{\circ}$; OC-Mn-N(bhp) = 93.7(2,8.7) and $169.5(2)^{\circ}$; $(bhp) C-Mn-N(bhp) = 79.3(2)^{\circ}$. ŝ
- .
- $\overrightarrow{OC-Mn-C(top)} = 88.8(5, 4.1)$ and 168.7(5)°; OC-Mn-P(top) = 93.3(3,7.9) and 159.9(5)°; (top)C-Mn-P(top) = 67.5(3)°. OC-Mn-C(dpc) = 86.8(4,3.4) and 174.6(3)°; OC-Mn-P(dpc) = 91.3(2,1.8) and 171.4(3)°; (dpc)C-Mn-P(dpc) = 81.7(3)°. OC-Mn-C(dopc) = 88.8(4,8.5) and 164.8(4)°; OC-Mn-P(dope) = 92.7(3,6.2) and 163.4(3)°; (dopc)C-Mn-P(dopc) = 66.1(3)°. OC-Mn-C(doph) = 82.7(5,2.0) and 173.5(5)°; OC-Mn-P(doph) = 89.9(4,1.6) and 178.1(5)°; (doph)C-Mn-P(dopc) = 65.1(3)°.
 - OC-Mn-C(topc) = 83.8(3,7) and $173.9(3)^{\circ}$; OC-Mn-P(topc) = 90.1(3,2.9) and $176.3(3)^{\circ}$; $(topc)\overline{C-Mn-P(topc)} = 93.1(2)^{\circ}$ <u>_</u> 1
 - OC-Mn-C(dopo) = 87.0(4)°; OC-Mn-P(dopo) 92.6(3,3.9) and 168.6(3)°; (dopo)C-Mn-P(dopo) = 81.9(2)°.
 - $(pope)C-Mn-P(pope) = 92.1(1)^{\circ}$.
- OC-Mn-C(dph) = 85.9(3,5.4) and 174.6(3)°; OC-Mn-P(dph) = 91.5(3,3.9) and 176.8(2) (dph)C-Mn-P(dph) = 86.9(2)°. . . .
 - OC-Mn-C = 85.7(2,5.8) and 178.5(2)°; OC-Mn-P = 89.0(2,9) and 177.1(2) C-Mn-P = 90.9(1)°.

 - 2
 - Ē
- OC-Mn-C (mdpc) = 86.0(4,2.1) and 177.2(3)⁶; OC-Mn-P(mdpc) = 90.8(3,4.2) and 170.3(3)⁶; (mdpc) C-Mn-P(mdpc) = 82.2(2)⁶. OC-Mn-CH_a = 82(3,5) and 172(2)°; OC-Mn-P = 92(3,4) and 169(2)°; H₃C-Mn-P = 93(2)°. OC-Mn-CH_a = 82(3,5) and 173(3)°; OC-Mn-P = 89(2,3) and 178(2)°; H₃C-Mn-P = 98(2)°. OC-Mn-C(dpch) = 83.4(4,1.6) and 175.7(4)°; OC-Mn-P(dpch) = 89.9(3,2.7) and 175.6(3)°; (dpch)C-Mn-P(dpch) = 90.8(2)°. . . .
 - These are crystallographically independent molecules. ы
- OC-Mn-C(dac) = 86.4(3,4.9) and $174.4(3)^{\circ}$; OC-Mn-As = $90.9(2,2.2)^{\circ}$; C-Mn-As = $81.3(2)^{\circ}$. OC-Mn-C(mtpc) = 89.4(4,5.4) and $175.1(4)^{\circ}$; OC-Mn-S(mtpc) = 88.5(4,2.0) and $177.2(4)^{\circ}$; (mtpc)C-Mn-S(mtpe) = $90.5(4)^{\circ}$. $P-Mn-P = 80.2(2)^{\circ}; P-Mn-C = 89.6(4,3.7)^{\circ}.$
 - OC-Mn-C(mgp) = 87.3(2,3.9) and $172.9(2)^{\circ}$; OC-Mn-P = 95.2(2,2.2) and $172.6(2)^{\circ}$; OC-Mn-S = 94.2(2,7) and $174.1(2)^{\circ}$; $(msp)C-Mn-P = 89.2(2)^{\circ}; (msp)C-Mn-S = 82.9(2)^{\circ}; P-Mn-S = 86.2(1)^{\circ}.$
 - At 253K.

Figure 11. Structure of $Mn_2(CO)_8{\mu-Ge(Br)Mn(CO)_8}_2$ Reproduced with permission from Acta Crystallogr. [133]

with non-equivalent chromophores: MnC_5S and MnC_3S_2Fe [125]; MnC_5Pd and MnC_4PPd_2 [127]; MnC_5M and MnC_4M_2 [121,133-135,137]

The mean Mn-CO bond distance increases from 181.2 pm in the heterotetrametallic compounds to 183.9 pm in the hetero-hexametallic compounds. The former is comparable to that found for the hetero-trimetallics (181.6 pm, Table 7), and the latter with the value for the hetero-bimetallics (183.6 pm, Table 6).

3. MANGANESE ORGANOMETALLIC COMPOUNDS

(A) Mononuclear Compounds

1. Manganese compounds with unidentate carbon ligands

Crystallographic and structural data for these derivatives are given in Table 9, and are listed and referenced in order of increasing coordination number and increasing atomic number of the principal coordinated atom.

Colourless high-spin $Mn^{II}(CH_2CMe_2Ph)_2(PMe_3)_2$ [141] is the only example in which the manganese(II) atom has a distorted tetrahedral geometry with C-Mn-C and P-Mn-P angles of 137.9(1)° and 96.2(1)°, respectively, which reflect the relative sizes of the two kinds of ligand. In all other examples the manganese atoms are in octahedral environments. The crystal structure of yellow cis-

 $[Mn(CO)_4(COMe)(COPh)](Me_4N)$ [146] is shown in Figure 12 as an example. The manganate anion has acetyl (Mn-C = 204.5(11)pm) ligands in cis positions and the remaining four sites are occupied by carbonyl ligands (Mn-C = 181.9(13,34)pm). The Mn-C(COMe) distance is somewhat shorter than Mn-C(COPh), reflecting the steric hindrance.

There is no example in Table 9 with six equivalent ligands. Only two examples have a non-carbon bonded tridentate ligand, bidentate ligands being more common. Distortion isomerism is observed for $Mn(CO)_3$ (obdp) [167] which exhibits two isomers, triclinic and orthorhomic with differences in degree of distortion. The two crystallographically independent molecules found in $Mn(CO)_4$ -(CH₃)(PPh₃) [161] are another example of distortion isomerism.

2. Compounds with bi-, tri- or tetradentate carbon ligands

Crystallographic and structural data for these compounds are found in Table 10, in which coordination numbers of four, six, seven and eight are observed. There is only one example, [Mn(tpbp)₂](thf)₂ [172], of a high spin manganese(II) atom with a distorted tetrahedral environment.

There are two examples, $[Mn(CO)_4(Ph-CHOCOCO)](ppn)$ [173] and $Mn[\sigma-(CH_2)_2C_8H_4](dmpe)_2$ [141], with manganese coordination number six. In the latter, the low spin manganese(11) atom is in a slightly distorted octahedral environment due mainly to the bite restrictions of the three chelating ligands, with P-Mn-P

Figure 12. Structure of the cis- $[Mn(CO)_4(COMe)(COPh)]^{-1}$ Ion Reproduced with permission from J. Amer. Chem. Soc. [146]

Table 10 Crystallographic a	nd struct	ural dat	a for	manganese o	rganometalli	ic compound	ds with	a multidentat	e ligands ^a	
Compound	Crystal Class	Space Group	2	a[pm] b{pm] c[pm]	a[°] ß[°] ¥[°]	Chromo- phore		Mn-L [mg]	J-Mn-L L-Mn-L [°]	Ref
[Mn ¹ (tpbp) _z](thf) _z	B	C2/c	4	2848.5(5) 1298.0(2) 1968.9(2)	110.51(1)	MnC ₄	ရ _{ွပ}	224.9(17,14) 279.8(20,0)	84.0(7)	172
[Mn(CO)_(Ph-CHOCOCO)]. ^C .(ppn)	£	- Id	5	1001.6(4) 1577.2(5) 1569.8(4)	86.55(3) 89.09(3) 118.62(3)	MnCa	ပ္ပင္ရ	182.2(8,6) 202.3(7,11)	93.47(33,2.13),170.85(34) 88.29(31,3.61),172.91(32,33)	173
Mn ¹¹ {o-(CH2)2CsH4}(dmpe)2	E	P2,/c	4	915.3(8) 1600.1(2) 1728.2(4)	103.66(3)	MnP ₄ C ₂	ט <u>א</u>	210.7(6,3) 226.4(3,34)	84.7(2) d	141
[cis-Mn(CO)4(ŋ³-dik)](ppn)	E	P2,/c	4	1457.3(4) 1747.2(4) 2017.5(5)	123.03(2)	MnC ₇	000	180(2,5) 225(2,13)	90.7(7,7.5),168.3(6) 97.1(7,15.1),150.4(8)	174
Mn(CO) _a (C ₁₃ H ₂₂ O ₈ P)	E	P2,/m	2	842.6(2) 1622.1(4) 864.8(2)	116.62(2)	MnC ₇	ပ္လင္လင္လင္ရ	179.0(10,21) 205.0(7)(2x) 215.8(8)(2x)	91.0(4,1.3) e1	175 176
Mn(CO) ₃ (C ₁₄ H ₂₁ O ₈ PS)	ţ	- Id	5	902.3(2) 1692.1(3) 867.0(2)	$102.01(2) \\94.87(2) \\90.68(2)$	MnC ₇	ဗ္ဂဂဂ	180.7(3,9) 207.7(2,5) 214.1(3,10)	91.4(1,5.2) ea	175 177
$Mn(CO)_{a}(\eta_{a}-C_{a}H_{a})CNMe)^{f}$	E	Ра	4	709.2(3) 2432(19) 594.8(2)	107.55(20)	MnC ₇	OC (na)C NC	179.7(9,113) 217.3(1,58) 194.2(7)	·	178
		1				MnC ₃ 7	OC NC	177.8(10.56) 219.0(1,78) 191.3(7)		
$Mn(CO)_{a} \{ \eta_{a}^{a} - (C_{4}F_{6})_{a}SC_{6}F_{5} \}$	tr	- 14	2	788.9(6) 1173.7(8) 1219.5(9)	91.45(10) 69.71(10) 81.55(9)		20	not given not given		179

Compound	Crystal Class	Space Group	8	a[pm] b[pm] c[pm]	α[°] ß[°] y [°]	Chromo- phore		M-I. [pm]	L-Mn-L L-Mn-L' [°]	Ref
Mn(CO) _a { ŋ ⁴ -C ₄ F ₆) ₂ SC ₆ F ₅ }	tr	P1	2	788.9(6) 1173.7(8) 1219.5(9)	91.45(10) 69.71(10) 81.55(9)	MnC ₇	ပ္ပင	not given not given		179
Mn(CO) ₂ (ŋ ⁴ -C ₄ Ph ₄)(NO)	E	P2,/c	4	892.1(2) 1877.5(8) 1405.6(5)	92.27(3)	MnC _a N	0C 0N 0N 0N	184(1) g 211(1,3)	ъ	180
Mn(CO) ₃ (ŋ⁴- C ₄ H ₃ S. CN)	E	P2,/C	4	1200.8(2) 669.35(8) 1217.2(2)	95.63(2)	MnC _s S	လင္လင္လ	179.7(6,6) 211.9(6,76) 234.6(2)	93.6(2,6.1) h	181
Mn ¹ (CO) ₂ (ŋ ² -C ₃ H ₆){P(OMe) ₃ }	E	P2,/a	4	1861.8(11) 921.8(7) 1060.7(11)	102.1(1)	MnCsP2	00 0(1) 0	179(2,4) 218.9(15,75) 219.7(5,22)	97.7(7) i	182
Mn(CO) _a (mopp)	5	- II	8	930.3(5) 1168.9(6) 1065.4(6)	81.90(2) 96.64(2) 83.71(2)	MnC ₅ OP	2004	179.0(4,10) 221.8(3,2) 205.8(2) 230.0(1)	91.78(18,6.51) j	183
Mn(p ^a -C ₅ H ₆)dmpe) ₂	E	P2,/n	4	1060.6(4) 2331(1) 901.9(2)	94.74(2)	MnC ₃ P ₄	U L	220(2,10) 223.3(10,27)	37.5(6,1.5),68.1(7) k	184
Mn(CO) ₃ { ŋ [°] -C ₆ H ₆ (CH ₃)}	E	P2,/c	4	654.6(4) 981.8(3) 1725.0(5)	112.00(3)	MnC ₇ H	HCOC BCC	179.8(3,23) 215.4(3,147) 186(2)	92.9(1,7.9) 1	185
Mn(CO) ₃ (p³-min)	8	C2/c	æ	2546 1162 825	109.8	MnC ₇ N	20N	172(-,6) 216(-,6) 216	92(-,2) m	186

į

Table 10, cont. (2)

\sim
~
\sim
cont.
10,
Table

Compound	Crystal Class	Space Group	2	alpm] b[pm] c[pm]	at '] B[°] 8[°]	Chromo- phore	M-L [mg]	L-Mn-L L-Mn-L' [°]	Ref
Mn(CO) _a (դ °-mpc)	E	P2,/n	4	2099.5(5) 1086.9(3) 678.4(2)	90.17(3)	MnC ₇ P	OC 178.9(9,12) C 215.9(8,17) P 237.9(2)	92.3(4,1.6) n	187
Mn(CO) ₃ { ŋ ⁶ -C ₄ As(Ph) ₄ }	E	P2,/c	4	883 1112 2672	98.09	MnC ₇ As	OC not given C 219.3(5) As 249.2(2)		188

- The first number in parenthesis is the e.s.d. and the second is the maximum The mean value for chemically identical angle or distance. deviation from the mean. æ
 - The chemical identity of coordinated atom or ligand م
 - At 113(5)K. Ċ
- P-Mn-P = $83.3(1,1)^{\circ}$ and C-Mn-P = $88.6(2,5.4)^{\circ}$. σ
- e,
- OC-Mn-C = 98.2(3)(2x); 104.7(4)(2x) and 161.5(3)°(2x); and C-Mn-C = 69.7(2)°. OC-Mn-C = 94.8(1,1); 101.5(1,1.5) and 164.4(1,9)°; and C-Mn-C = 80.1(1)°.
 - There are two crystallographically independent molecules. a⁶ 4. b0
- Cannot distinguish between Mn-CO and Mn-NO bond distances of 172(1) and 178(1)pm; OC-Mn-X (X = CO or NO) = 99.7(5,9)°; and X-Mn-X = $99.4(5)^{\circ}$.
- The OC-Mn-C = 91.6 163.5(2)°; OC-Mn-S = 101.2(2,3.1) and 160.6(2)°; C-Mn-C = 37.2(3,1.4) and 65.5(2)°; and C-Mn-S = 46.4(2) and 70.1(2,1)°.
- OC-Mn-C = 97.6(6,1.5) and 164.3(7,1.9)°; OC-Mn-P = 86.9(6,3)°; C-Mn-C = 67.0(6)°; C-Mn-P = 93.1(5,12.0)°; and P-Mn-P = 172.8(2)°. OC-Mn-C = 98.93(16), 130.30(15,2.25) and 164.94(15)°; OC-Mn-O = 100.51(14,17) and 159.66(13)°; OC-Mn-P = 89.09(12,1.03) and 176.25(14)°; C-Mn-O = 36.01(11) and 66.03(10)°; C-Mn-P = 91.80(9,8.34)°; O-Mn-P = 83.25(7)°; and C-Mn-C = 38.28(12)°. C-Mn-P = 95.2(6,7.6) and 162.5(5,6.4); and P-Mn-P = 89.1(3,10.2) and 169.3(3)°. O-Mn-P = 83.25(7)°; and C-Mn-C = 38.28(12)°. C-Mn-P = 95.2(6,7.6) and 162.5(5,6.4); and P-Mn-P = 89.1(3,10.2) and 169.3(3)°. O-Mn-P = 89.1(3,10.2) and 169.3(3)°.
 - - يد.
- $27.4(7) 91.9(7)^{\circ}$.
 - OC-Mn-C = 90 160°; and OC-Mn-N = 97,107 and 158°. C-Mn-C = 38.2(3,3)°; and C-Mn-P = 45.5(2,9)°. 8 9

angles of 83.2(1)° and 83.3(1)° and a C-Mn-C angle of 84.7(2)°. The mean Mn-C bond distance of 210.7(6,3) pm is about 15.7 pm shorter than the mean Mn-P distance (226.4(3,34)pm), reflecting the van der Waals radii of carbon (170 pm) and phosphorus (185 pm).

In another ten examples [174-184) manganese is bonded to seven donor atoms. There are various stereochemical arrangements: four unidentate and one carbon bonded tridentate ligand [174,178,182]; three unidentate ligands and one tetradentate carbon bonded ligand [175-177,179,180]; three unidentate ligands and one tetradentate (3C+S) [181]; three unidentate ligands and one tetradentate (2C+O+P) [183]; two bidentate ligands and one tridentate carbon bonded ligand [184]. The molecular structure of orange $Mn(CO)_2\eta^4$ -C₄Ph₄(NO) [180] is shown in Figure 13 as an example.

The tetraphenylcyclobutadiene ligand is \mathbf{n}^4 coordinated to the Mn atom at an average Mn-C distance of 211(1,3) pm. The Mn-C(2), (CO) bond distance is 184(1) pm and another two of the X-O(X = C or N) ligands are disordered (Mn-X = 172(1) and 178(1) pm). The disorder problem has been addressed in the original literature [180] and need not be elaborated upon here. Two crystallographically independent molecules have been found in Mn(CO)₃(\mathbf{q}^3 -C₃H₅)(CNMe) [178], as examples of distortion isomerism.

Comparing two types of seven coordination (a) four unidentate + one tridentate C-ligand systems with (b) three tridentate + one tetradentate, the

Figure 13. Structure of $Mn(CO)_{s}(\eta^{4}-C_{4}Ph_{4})(NO)$ Reproduced with permission from Organometallics [180]

Table 11 Crystallograpl	hic and str	ructural fo	r mang	anese compou	inds with pe	nta- or he	xadentate carbon liga	nd ^a	
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a{°] B{°] ¥[°]	Chromo- phore	M-L [mg]	(0)C-W-C(0) (0)C-W-C(0)	Ref
Mn' (CO) ه(۴ °-cp)	E	P2,/a	Ŧ	1207.7(3) 705.7(2) 1091.3(2)	117.68(2)	MnCa	OC ^b 178.0(2,8) (cp)C 212.4(2,7)	92.02(9,50) c	189
Mn(CO) _a (ŋⁿ- cpac)	E	P2,/c	4	1319 1239 626	95	МпС _в	OC 180(5,3) (cp)C 214(5)	91.94(2.0,3.21)	190 191
Mn(CO) _a (ŋ ^a -cp-bz)	E	P2,/c	4	1247 642 1649	96.7	MnCa			191
Mn(CO) _a (ŋ ^a -cp-mc)						MnC _e	0C 174.6 (cp)C 212	not given	192
Mn(CO) _a (ŋ^s- cp-ae)	s	P2,	2	812.0(1) 944.25(8) 857.6(1)	93.70(1)	MnC _a	OC 177(1,2) (cp)C 214(1,1)	91.1(6,9)	193
Mn(CO) ₃ (ŋ ³ -cp-df)	or	P2,2,2,	4	746.1(1) 765.2(1) 2469.6(4)		MnC,	OC 180.2(3,5) (cp)C 214.6(3,25)	91.9(1,6)	
Mn(CO) _a (ار ⁸ -dop)	B	P2,/c	4	1324.9(5) 717.8(4) 1566.2(6)	96.66(3)	MnC _s	OC 181(1,6) C 219(1,11)	93.1(6,6.3) d	
Mn(CO) _a (ŋ ^a -cp-tm)	B	P2,/n	4	799.6(3) 250.0(1) 1048.6(4)	96.18(2)	MnCa	OC 176.7(13,10) C 215.8(10,66)	90.6(6,3) 38.7(3,5)	196
$Mn(CO)_{3}(\eta^{5}-C_{6}H_{6}Br)$	8	P2,/c	4	$\begin{array}{c} 1295.3(9)\\762.7(5)\\1309.8(9)\end{array}$	110.53(5)	MnCa	OC 179.3(10,23) C 216.2(9,60)	92.1(5,1.2)	197
Mn(CO) ₂ (η⁶- cp)(CNBu)	01	Pna2,	4	$1912.3(9) \\ 602.0(3) \\ 1094.2(5)$		MnCa	OC 187(4,5) (cp)C 214(3,60 C 185(2)	91(1) 92(2,2)	198

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] J [°]	Chromo- phore	M-L [pm]	(0)C-M-L (0)C-M-L (0)	Ref
Mn(CO) _a (¶ ⁶ -cp)(CMe _a) ^f	or	Cmc2,	œ	985.8(1) 1212.1(1) 1653.7(1)		MnC, MnC,	OC 179.2(4,0) (cp)C 218.2(8,9) C 187.2(10) OC 179.3(5,0) (cp)C 219.3(8,4) C 186.4(10)	88.5(2) 90.5(3) 89.0(2) 90.7(3)	199
[Mn(CO) _s (ŋ [°] -cp)(COPh)] .(NMe ₄) ^f	ю.	lb2a	16	5826.6(7) 1137.2(3) 1068.3(2)		MnC. MnC.	OC 178(3,1) (cp)C 215(4,3) C 195(2) OC 179(3,2) (cp)C 219(4,3) C 197(2)	90.7(1.2) 87.6(1.4,1.2) 88.8(1.2) 88.1(1.2,3.9)	200
Mn(CO) _a (ŋ [°] -cp){C(OEt). .Ph}	E	P2, /c	4	756.0(3) 722.8(4) 2652(1)	94.11(4)	MnC。	OC 180.0(15,5) (cp)C 216.9(14,19) C 186.5(14)	91.1(7)	
Mn(CO) _a (ŋ ^e -cp){C(F)Ph}	8	P2,/c	4	1304.5(6) 753.1(2) 1236.0(5)	92.87(3)	MnCa	OC 179.0(6,6) (cp)C 214.8(7,12) C 183.0(5)	90.8(3) 91.9(3,1.9)	202
Mn(CO)2(n°-cp)(CPh2)	E	P2, /c	4	$\begin{array}{c} 1288.2(2)\\ 738.0(2)\\ 1724.3(2)\end{array}$	106.95(1)	MnC _s	OC 178.8(2,5) (cp)C 217.2(2,19) C 188.5(2)	90.80(9) 92.45(9,1.60) g	203
Mn(CO)₃(ŋ⁵-cp)(C=CMe₂)	or	Рпта	Ŧ	742.3(5) 1171.2(9) 1236(1)		MnC _a	OC 174(1,0) (cp)C 213(2,2) C 179(2)	87.7(7) 91.5(8)	204
Mn(CO) _a (ŋ ^e -cp)(CCPMe _a . .Ph)	8	P2, /a	4	1061.1(2) 1860.3(3) 819.3(2)	102.55(2)	MnC	OC 174.3(7,1) (cp)C not given C 189.5(5)	not given	205
Mn(CO) ₃ (ŋ ⁶ -cp)(C=CHPh)	or	Pccn	œ	1049.2(2) 3303.8(6) 747.5(2)		MnC,	OC 174(3,7) (cp)C 216(2,0) C 168(2)	89(1) 92(1)	206

Table 11, cont. (2)

Table 11, cont. (3)									
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	M-L [pm]	(0)C-M-C(0) (0)C-M-L [°]	Ref
[Mn(CO) ₃ (q ^{s-cp)} . .(CCHCPh ₂)](BF ₄) ^h	E	P2,/c	4	1017.9(3) 1528.6(4) 1296.1(4)	103.57(3)	MnC _s	OC 174.1(5,76) (cp)C 213.9(6,24) C 183.8(6)	93.1(2) 94.5(3,6)	207
[Mn(CO) ₂ (ŋ °-cp){C(PPh _a) .CCPh _a)]CH _a Cl _a). tr	РĨ	5	1026.6(2) 1060.3(2) 1632.0(4)	79.22(2) 84.30(2) 74.70(2)	MnCa	OC 176.5(2,2) (cp)C 215.3(2,13) C 206.5	90.4(1) 96.2(1,4.4)	208
Mn(CO) _a (ŋ [°] -cp){C(Ph). .COPh}	e	P2,/n	4	711(2) 1087(2) 2194(2)	93.5(2)	MnC ₆	OC not given (cp)C not given C 188(2)		209
Mn(CO) _a (n ^e -cp). {C(CO _a Me)CHPPh _a } h	£	P2, /a	4	1474(1) 1091(1) 1557(1)	100.57(5)	MnC _s	OC 176.5(4,5) (cp)C 215.8(3,6) C 198.5(3)	95.7(1) 88.6(2,3.1)	210
Mn(CO)_(¶°-cp). (CCHC ₆ H₄CBrCH₂)	or	P2, 2, 2,	4	692.5(1) 855.9(1) 2658.9(2)		MnCa	OC 176(2,1) (cp)C 214(3,4) C 180(3)	91(1) 90(1,0)	211
Mn(CO) _a (ŋ^a- cp)(dbc)	E	P2, /n	4	1045.6(4) 789.9(2) 2153.6(4)	101.56(3)	MnC _s	OC 178.4(6,6) (cp)C not given C 185.3(5)	88.9(3) 93.9(3,6)	212
Mn ¹ (CO) ₂ (n ⁶ -cp)(dca)	E	P2,/c	4	1178(2) 999.4(1) 1806(4)	110(1)	MnC _e	OC 176.7(7,4) (cp)C 212(1,1) C 180.6(6)	87.9(3) 90.9(3,3)	213
Mn(CO) ₂ (ŋ^a- cp)(acn)	s	P2, /a	4	925.7(4) 1252.8(5) 1215.6(4)	91.44(3)	MnC ₇ N	OC 177.0(4,2) (cp)C 215.0(5,39) (acn)N 206.3(3)	90.1(2) 95.7(1,1.8)	214
Mn(CO) ₂ (ŋ⁵- cp)(dam)	8	P2, /n	4	1019.85(44) 1405.50(74 1105.30(52)	116.22(3)	MnC ₇ N	OC 179.7(7,12) (cp)C 213.9(7,14) (dam)N 179.6(5)	90.3(3) 94.8(3,1.4)	215

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[º] y [º]	Chromo- phore	J-M M-I	_	(0)C-M-C(0) [°] [°]	Ref
[Mn(CO) _z (n ⁰ -cp [*]). (o-N _z C _a H ₄ CF ₃)](BF ₄)	or	Fdd2	16	1286.6(3) 5660.5(11) 996.4(2)		MnC ₇ N	0C 1 (cp*)C 2 N 1	82.9(13,14) 113.8(11,34) 69.3(7)	89.1(6) 98.8(5,5)	216
Mn ¹ (CO) ₂ (ŋ ⁵ -cp) (PPh ₃)	ţ	- 14	3	941(2) 1060(2) 1136(2)	103.47(16) 79.47(16) 101.72(16)	MnC ₇ P	0C 1 (cp)C 2 P 2	75.3(11,13) 114.5(12,22) 23.6(3)	92.42(41) 91.59(30,1.07)	217
Mn ¹ (CO) ₂ (ŋ ⁵ -cp [*])(PPh ₃)	ĩo	Pbca	œ	775.5(3) 1697.5(7) 3309.1(11)		MnC ₇ P	0C 1 (cp*)C 2 P 2	77(1,1) 14.7(9,15) 23.2(2)	91.5(4) 92.7(3,1.4)	218
Mn ¹ (CO) ₂ (ŋ ³ -cp) (pvp)	5	- IA	2	1272(1) 989(1) 1112(1)	94.10(8) 116.90(8) 70.28(8)	MnC ₇ P	0C 1 (cp)C 2 P 2	76(2,1) 10-215 220.1(4)	not given	219
[Mn¹(CO)(ŋ³-c p). {CS₂C₂{P(OMe)₃}]	e	P2,/c	4	785.2(2) 2296.2(5) 1200.2(3)	108.42(2)	MnC7P	OC 1 (cp)C 2 C 1 C 1 P 2	75.4(3) 15.5(3,21) 87.6(2) 117.4(0)	- mi	220
Mn(CO) _a (n ^b -cp)(SO _a)	8	P2,/c	4	1098(2) 1063(2) 743(2)	100.75(8)	MnC ₇ S	0C 1 (cp)C 2 S 2	74.9(15,39) (09.1(17,25) (03.7(5)	90.55(62) 92.91(50,1.95)	221
Mn(CO) ₂ (¶ ⁵ -cp). .(SC ₁₁ H ₁₈)	E	P2,/n	4	822.9(2) 1045.1(2) 2084.1(3)	93.64(1)	MnC ₇ S	0C 1 (cp)C 2 S 2	77.7(3) 14.3(4) 21.8(1)	89.1(1) 94.1(1,5)	222
Mn(CO)(ŋ ^{a-cp‡})(NO). .(PPh _a)	o	Pbca	æ	1796.9(53) 2663.1(78) 927.7(35)		MnCaNP	OC 1 (cp)C 2 (cp)C 2 (cp)C 2 ON 1 Ph ₃ P 2	77.1(7) 112.6(6,67) 112.6(6,67) 112.6(6,67) 112.6(6,67) 128.5(2)	ĩ	223

Table 11, cont. (4)

Table 11, cont. (5)									
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	M-L [pm]	(0)C-M-C(0) (0)C-M-L [°]	Ref
M n(CO)(g ⁶ -cp [*])(NO)I	E	P2, /a	4	1281.1(9) 807.8(8) 1243.5(18)	126.90(3)	MnC _s NI	OC 180.3(6) (CP)C 215.9(6,3(ON 164.7(6) I 264.5(2)) k	224
$Mn(tmeda)(\boldsymbol{\eta}^{s},cp)(\boldsymbol{\eta}^{t},cp)$	E	P2,/n	4	1237.4(3) 969.4(1) 1342.3(1)	101.24	MnC ₆ N ₂	(n ¹)C 232.0(5) (n ⁶)C 250.7(7,64 N 234.6(5,8)	1	225
Mn(CO) ₃ (ŋ [°] -C ₆ H ₇)	or	Pnma	4	1319.9(10) 881.0(7) 752.8(6)		MnCe	0C 179.1(9,11 (n ⁵)C 217.7(8,45) 92.0(4,2.6)	226
[Mn ¹)(CO) ₃ (ŋ ⁶ -exo- -PPh ₃ C ₇ H ₈)](BF ₄)	8	P2,/c		959(3) 1458.0(4) 1957.4(6)	107.23(8)	MnCa	OC 180.0(6,4) C 216.0(7,45	92.5(2,5.9)	227
Mn(CO) _a (ղ ^s -cp). (դ² -C ₁₇ H ₁₄ 0	E	P2,/n	4	998.9(3) 1302.3(4) 1466.6(4)	91.33(4)	MnCe	OC 179.5(9,15 (cp)C not given (\mathbf{n}^2) C 194.0(7) (\mathbf{n}^2) C 221.2(6)) not given	212
$\operatorname{Mn}(\operatorname{CO})_{\mathfrak{a}}(\mathfrak{n}^{\mathrm{s-cp}}), \operatorname{\widetilde{\mathfrak{m}}}_{\mathfrak{a}}$.($\mathfrak{n}^{\mathfrak{s}}$ -C ₇ H _s)	or	Pnma	4	1198.6(5) 1117.1(5) 883.7(5)		MnC _B	0C 177.3(2,0) (cp)C 213.1(3,1((η^2))C 215.4(2,0)	91.4(5) In	228
$Mn(CO)_{a}(\eta^{b}$ -cp) $(\eta^{2}$ -dep)	۲ ۲	Id	4	1057.8(2) 1112.0(2) 1806.9(4)	72.42(1) 84.46(1) 88.02(1)	MnC _s MnC _s	0C 175.9(7,14 (cp)C 215.8(6,9) (q ²)C 211.9(9,22 0C 178.1(7,3) (cp)C 215.5(5,14 (cp)C 215.5(5,14 (q ²)C 212.3(8,22)	п, , п, , 1, , 1, , 1, , 1, , 1, , 1, ,	229
Mn ¹ (CO) ₂ (¶ ⁵ -cp). (¶ ² -CH ₂ =CHCOCH ₃)	o	P2, 2, 2, 2,	4	771.8(2) 1040.2(5) 1372.3(4)		MnC	OC 178.7(7,1) (cp)C 213.7(8,28 (n ²)C 218.2(8,13	88.8(4)) o	230

Table 11, cont. (6)										
Compound	irystal lass	Space Group	Z	a[pm] b[pm] c[pm]	a[°] B[°] ¥[°]	Chromo- phore	М-Г. [рт]		(0)C-M-C(0) (0)C-M-L [°]	Ref
Mn(CO)_a(ຄໍ ^ຣ -cp). ^f (ຄໍ [ື] -CH ₂ =CPh(OCOMe)	E	P2, /a	æ	2238(2) 1483(1)	91.60(8)	MnCs	0C 178(2,3 (cp)C 219(2,0	88	89.6(8) f1	231
				(1)216		MnCa	$(\mathbf{r}_{0}) = \frac{1}{2} (\mathbf{r}_{0}) = \frac{1}{2} (\mathbf{r}_{$		91.3(8) f_2	
Mn(CO) _a (n°-cp) . { n °-C(Ph) _a =c=o}	E	P2,/c	ተ	678(2) 1397(2) 1863(2)	99.55	MnC"	OC 177(2, ((cp)C not giv (ŋ ²)C 207(2, 1	(1) en	not given	232
$Mn(CO)_a(\mathfrak{n}^{\mathtt{s}}^{\mathtt{-}}cp)(\mathfrak{n}^{\mathtt{s}}^{\mathtt{-}}C_{\mathtt{s}}H_{\mathtt{s}})$	E	P2,/c	4	1081.3(7) 660.6(4) 1716.4(9)	94.68(5)	MnC _e	OC 178.7() (cp)C 215.6() (ŋ²)C 219.8()	2,4) 2,15) 2,5)	88.8(1)	233
$Mn(CO)_{\mathfrak{a}}(\mathfrak{p}^{\mathtt{s}}\text{-}cp^{\mathtt{s}})(\mathfrak{n}^{\mathtt{s}}\text{-}ak)$	tr	' II	2	841.8(4) 1058.7(5) 1179.3(4)	107.59(3) 95.44(2) 112.18(3)	MnC ₆	OC 179.9(' (cp [*])C 215.5 (η ²)C 210.9('	1,30) 3, 1 33)	91.1(3)	234
$[Mn(CO)(\boldsymbol{\mathfrak{h}}^{s}^{-}cp^{\boldsymbol{*}})(\boldsymbol{\mathfrak{n}}^{a}^{-}aac)$	E	P21/c	4	793.6(2) 1459.3(5) 1256.9(5)	99.08(3)	MnCa	OC 168(1) (cp [*])C 215(1, (ŋ ³)C 204(1,	2) [5)	ъ	235
Mn' (CO) ₃ (ŋ °-C ₆ H ₆ CH- -[CO(OEt)] ₂)	1 0	Pbcn	89	2524(1) 920(2) 1489(2)		MnC _a				236
$Mn(CO)_3(p^6-C_{13}H_B)^{f}$	E	P2,/c	œ	961.0(3) 2277.8(5) 1339.6(9)	91.54(2)	MnC _e	OC 179.9(C 220.8() C 251.1()	3,13) 5,85)	91.8(2,1.3)	237
				(2)0.0001		MnC ₆	OC 179.7() C 219.0() C 250.5()	7,9) 3,81) 5)	91.9(2,2.4)	
Mn ¹ (CO) ₃ (n ⁶ -C _{1a} H ₂₄)]. . (BF ₄)	or	P2,2,2,	4	995.0(2) 1039.8(2) 2041.2(3)		MnC _a	OC 179.5(C 221.2(11,1 4) 3,18)	91.13(5,73) s	238

	Class	Space Group	2	a [pm] b [pm] c[pm]	۵[°] لاا°]	chromo-	л-м [mq]	(0)C-M-C(0) (0)C-M-L [°]	Ket
Mn(CO) _a (ŋ ^e -C _e Me _e)Cl ^T	E	P2,/c	4	870.1(3) 1361.8(5) 1326.6(4)	120.82(1)	MnCaCl	OC 220.70(26,448) C 185.3(4,10) C1 235.43(10)	89.37(11) 89.85(9,34)	239
Mn(CO) _a (ŋ ^e -PhB)	or	Pbca	80	1047(1) 1554(2) 1636(2)		MnC _a B	OC 179.7(8,4) C 220.1(7,46) B 238.5(8)	91.1(3,1.9)	240
a The mean value for the maximum deviati	chemically on from th	identical te mean	angle (or distance.	The first n	umber in pa	menthesis is the e.s.d	I. and the second i	20
b The chemical identit c (cp)C-Mn-C(cp) = $(c^{n})C-Mn-C(n^{2}) = (c^{n})C-Mn-C(n^{2}) -Mn-C(n^{2}) = (c^{n})C-Mn-C(n^{2})C-Mn-C(n^{2}) = (c^{n})C-Mn-C(n^{2})C-Mn-C(n$	y of coord 38.14(8,67) 17.6(4,1.3)	linated at: ,°. and 79.5	om or li i(5,9.5)	gand. °.					
For the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of the two controls of two contr	s.7(3,5) tallographi 3.64(9) - 1	cally inde [54.39(9)°	pendent ; C-Mn	-C(cp) = 96.	89(9) - 159.	00(9)°; (cp)C-Mn-C(cp) = 37.72(10,36) and 63.07(9.	,2 0)°.
$\begin{array}{c} \mathbf{P} - \mathbf{M} \mathbf{n} - \mathbf{C}(\mathbf{O}) = 90.73(\mathbf{O}) \\ \mathbf{P} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} - \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} = 102.8(\mathbf{O}) \\ \mathbf{O} - \mathbf{M} \mathbf{n} + \mathbf{N} $	9)°; P-Mn	-C(cp) = -Mn - P = 1	87.60(9 102.2(2)) - 147.14(9)	^o ; and P-Mi -P = 93.9(2)	n-C = 94.88)°.	(1)°.		
k (U)C-Mn-1 = 91.0(Z $[(n^{1})C-Mn-N = 98.9($ m At 170K; (O)C-Mn-($(cp) = 12^{\circ}$	centrold c 1-Mn-N = 4.1(5)°; (1 cp ¹ 78.6°; 0)C-Mr	= 179.4 pm. N-Mn-C(cent: $n-C(C_7H_a) =$	roid of n ⁵ -c] 108.5(1)°; (p) = 117.4(cp)C-Mn-C(-,6)°. C ₇ H _e) = 117.4(5)°		
(C ₇ H ₆)C-Mn-C(C ₇ H ₁ n ₁ (O)C-Mn-C(centroid n ₂ (O)C-Mn0C(centroid	a) = 38.0(] of cp) = of cm) =	1)°; Mn-C 120.1(3,2 120.8(? ?	centro .2)°.	id of cp) = 1	[77.3(3) pm.				
 0 (0)C-Mn-C(dep) = 0 (0)C-Mn-C(centroid 	77.8(4) an	d 88.8(4) ¹ 122(-,2) ⁰	(0) (0) (0) (1) (0) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-Mn-C(centro -Mn-C(centro	oid of cp) = id of n^2) = $(1 + 1)^2$	92.3(4) and 93(-,3)°; (d	i 100.6(4)°, (dep)C-M centroid of cp)C-Mn-C	In-C(dep) = 37.5(3) (centroid of n^2) =)°. 127°.
p (O)C-Mn-C(centroid q (O)C-Mn-C(aac) = {	l of cp) = 6.2(4,1.4)	122(-,2)° and 103.	; (0)C	-Mn-C(centro and (aac)C-N	id of n²) = : Mn-C(aac) =	93(-,3)°; (c 37.7(3), 79	sentroid of cp)C-Mn-C .4(4) and 111.8(4)°.	(centroid of n ²) =	128°.
r At 115K. s C-Mn-C = 27 3973 9	8). 67.320	3.42) and	79.60(3,50)°.					

Table 11, cont. (7)

mean Mn-C(CO) bond distance is smaller in the former (179.2 to 179.9 pm) while the Mn-C(multidentate) distance is bigger (220.4 to 210.8 pm).

There are four examples [185-188] in which the manganese atoms are surrounded by eight donor atoms with the chromophores: MnC_7H [185]; MnC_7N [186]; MnC_7P [187]; and MnC_7As [188]. In each case the chromophores are built up from three carbonyl groups and one pentadentate heterocyclic ligand. The mean Mn-C and Mn-X distances increase with the size of the pentadentate ligand and the radius of X: 215.4(3) and 186(2) pm (H,37 pm) [185] <216 and 216 pm (N,75 pm) [186] <215.9(8) and 237.9(2) pm (P,110 pm) [187] <219.3(5) and 249.2(2) pm (As,122 pm), respectively.

3. Compounds with penta- or hexadentate carbon ligands

Crystallographic and structural data for this class of compound are listed in Table 11, from which it may be seen that the most common ligands are carbonyl and cyclopentadienyl. The molecular structure of the monoclinic $Mn(CO)_2(\mathbf{n}^{5}-cp)(CPh_2)$ [203] is shown in Figure 14 as a example. The manganese atom is located directly below the centre of the cyclopentadienyl ring at an average 217.2 pm away from each carbon. The two carbonyl ligands are linear (Mn-C-O = 178.0) and have normal Mn-C (178.8 pm and C-O (114.8 pm) bond distances. The carbone ligand has a Mn-C(8) distance of 188.5(2) pm.

Figure 14. Structure of Mn(CO)₂(q_{r}^{s} -cp)(CPh₂) Reproduced with permission from J. Amer. Chem. Soc. [253]

Table 12 Crystallograph	vic and st	ructural da	ta for 1	manganese co	mpounds wi	th two mul	tidentate ring li	iganda ⁸		
Compound	Crystal Class	Space Group	Z	a[pm] b[pm] c[pm]	α[°] β[°] γ [°]	Chromo- phore	{bm} [pm]	C ^C -Mn C ^C -Mn	-C°	Ref
Mn ⁰ (ŋ ⁴ -C ₄ H ₈) ₂ (CO)	à	P42,m	2	780(1) 780(1) 721(1)	06 06	MnC _a	(η ⁴)C ^b 211(1,5) 0C 184(1)	not gi	Ven	241
Mn°(nf°-C _o H _a)_2(CO)	or	P2,2,2,	4	857.0(1) 1722.0(1) 756.2(1)		MnC _b	(\$^)C 211.9(7, 0C 179.1(6)	46) 89.5(3	,1.9)	242
Mn°(ŋ⁴-C₄H₅)₃{P(OMe)₃]	d m	P2,/c	4	1413.7(2) 784.1(1) 1201.7(2)	97.73(1)	MnC _s P	(n ⁴)C 210.3(3, P 218.8(1)	38)		243
Mn(ŋ [®] -tmdt)(PMe₃)	E	P2,/c	4	801.7(2) 1477.1(4) 1587.8(4)	113.32(3)	MnC _a P	(ŋ ⁸)C 211.1(4, P 229.0(1)	58) 90.7(1	,3.2),126.1(1,2.3)	244
Mn"(n "-cp) ₂ ^e						MnC ₁₀	C 238.0(6)			245
Mn ¹¹ (n ² -cp) ²	or	Pna2, (Pnam)	4	1402.7(2) 582.9(1) 996.5(1)		MnC ₁₀	C 247			246
Mn ¹¹ (ŋ ⁵ -C ₅ H ₄ CH ₃) ₂ ^g 1						MnC10	C 243.3(8)	g,		247
						MnC, o	C 214.4(12) ^{g_3}		
Mn ¹¹ (n ³ -C ₅ Me ₅) ²						MnC10	C 213.0(4)			
Mn ¹¹ (n ⁵ - C ₅ Me ₅) ₂	E	C2/c	*	1514.3(4) 1224.8(3) 991.0(3)	93.56(3)	MnC, a	C 211.4(2,	9) 39.22(65.79 114.21 140.78((7,52) (7,35) (7,52) (7,52)	249
Mn(n ⁵ -C ₅ H ₄ CH ₃). (n ⁶ -C ₁₃ H ₁₂)	E	P2,/c	4	754(1) 1177(2) 16.42(2)	80.6(2)	MnC,	(ຖ ້ ⁵)C 212(2,2) (ຖ້ ຶ່)C 210(2,5)	38-169		250

Table 12, cont. (2)									
Compound	Crystal Class	Space Group	2	a{pm] b{pm] c[pm]	a[°] B[°] ¥[°]	Chromo- phore	M-L [md]	c ^c -Mn-L c ^c -Mn-C	Ref
Mn ¹¹ {(n ⁵ -cp) ₂ pr} {(C ₅ H ₃ N	Cl_2)					MnC ₁₀ N	(n ^c)C 240.2-248.3(7) N 231.0(6)	í	251
Mn'(n ^{°-cp})(n [°] -C ₂₃ H ₁₇ P)	i tr	- 14	Ŧ	1584.3(5) 1366.5(3) 1015.5(2)	93.89(3) 102.75(3) 89.00(3)	MnC ₁₀ P	(p ⁿ)C 211.7(5,20) C 215.5(5,108) P 234.6(2)	not given	252
						MnC ₁₀ P	(n ⁶)C 209.2(6,9) C 210.9(6,14) P 237.6(2)		
Mn ¹¹ (դ ⁵ -cp) ₈ (PMe ₃)	E	P2,/c	4	824.3(1) 1530.3(1) 1147.6(2)	108.04(1)	MnC ₁₀ P	(n ^e)C 252.3(7,107) P 257.7(4)	k,	253
Mn"(n°-cp) _a (PMePh _a)	Ħ	P2,/c	4	908.0(1) 1016.1(1) 2176.9(1)	100.66(1)	MnC ₁₀ P	(n ⁶)C 251.4(7,210) P 261.3(4)	K 2	253
Mn ¹¹ (դ ⁶ -cp) ₂ (dmpe)	ធ	P4n2	4	1389.2(2) 1389.2(2) 905.0(3)		MnC10P2	(n ⁵)C 261.4(8,128) P 267.4(4,0)	ka	253
a The mean value for deviation from the r b The chemical identit c Multidentate ligand. d At 173K e By gas phase electr f Polymeric structure. g, By gas phase electr b By gas phase electr h By gas phase electr f (centroid)cp-Mn-cp(k, (centroid)cp-Mn-cp(k, (centroid)cp-Mn-cp(k, (centroid)cp-Mn-cp(chemically mean. y of coord on diffract on diffract on diffract allographic centroid) centroid) centroid)	identical $($ inated ator tion at abo tion at abo tion at abo cally indep = 142.3(4) ⁶ = 142.3(4) ⁶ = 136.9(2) ⁶	angle of n or lig ut 413K ut 4373K ut 443K endent ; (cen	r distance. pand.	The first m h-spin spec P = 108.8(2, P = 108.6(5, P = 105.6(2)	amber in pr ies. g., 8)°. 1.9)°.	rrenthesis is the e.s.d Low-spin species. : 77.4(2)°.	, and the second is the maxim	a na

The data can be separated into three crystal classes, the most common being monoclinic followed by orthorhombic and then triclinic. Two crystallographically independent molecules have been found in several cases [199,200,-229,231,237] as examples of distortion isomerism.

The mean Mn-C(CO) and Mn-C(cp) bond distances increase with the coordination number in the order eight <nine, corresponding to the values 178.0 and 215.0 pm <180.5 and 215.6 pm respectively.

In the series of manganese eight coordinate compounds the mean Mn-C bond distance increases with the ligand size in the order: 178.0 pm (CO) <187.0 pm (other unidentate C-ligand) <215.0 pm (pentadentate). For the nine-coordinate derivatives the order is: 180.4 pm (CO) <213.9 pm (bidentate-C) <215.6 pm (pentadentate). In addition the mean Mn-P distance decreases from 225.1 pm (PPh₃) to 217.4 pm (P(OMe)₃), reflecting the decrease in steric demand of the phosphine ligand.

4. Compounds with two multidentate ring ligands

Crystallographic and structural data for these derivatives are summarized in Table 12. The cyclopentadienyl radical is again one of the most commonly found π -donor ligands. The data is arranged in increasing order of coordination number and increasing order of atomic number of the principal coordinating ligand. The compounds can be classified into two groups, those with a parallel ring "sandwich" arrangement and those with an open or "clino-sandwich" arrangement. There are five examples of the former, including those with two cyclopentadienyl rings, and those with cyclopentadienyl and cycloheptatrienyl rings [250]. While the electronic ground-state of Mn(cp)₂ [245,246] is high spin, that of decamethylman-ganocene is low spin.

Electron diffraction studies of 1,1-dimethylmanganocene [247] shows that the gas contains two geometrically distinct species of high and low spin respectively. The larger Mn-C vibrational amplitude of 16.0(16) pm of the low spin species compared to that of 11.11(8) pm for the high spin species is consistent with the existence of a dynamic Jahn-Teller effect involving the ring tilting modes [247].

It is noted that the mean Mn-C bond distance 212.7 pm (range 211.4-214.4 pm) found in the low-spin manganese(11) compounds is far shorter than 242.8 pm (range 238.0-247.0 pm) found in the high spin ones. The relatively long distances in the high-spin manganese(11) derivatives are related to the singly occupied d_x^2 - v^2 orbital.

The remaining examples in Table 12 are of the "clino-sandwich" structural type. The structure of high-spin $Mn(\eta^5-cp)_2$ (dmpe) [253] is shown in Figure 15 as an example. The compound has crystallographic C2 symmetry and a pseudo tetrahedral geometry, if the cyclopentadienyl ring is regarded as occupying one coordination site. The Mn-C distances are 249.2(6) to 274.2(8) pm with an

Figure 15. Structure of $Mn(\eta^5-cp)_2$ (dmpe) Reproduced with permission from J. Amer. Chem. Soc. [253]

average value of 261.4 pm, and the Mn-P distance is 267.4(4) pm. The presence of the ligand dmpe causes the (centroid)cp-Mn-cp(centroid) angle to decrease to 136.9(2)°. As the steric demand of this extra ligand decreases, so does the Mn-P distance to 261.3 pm in $Mncp_2(PMePh_2)$ and to 257.7 pm in $Mncp_2(PMe_3)$ [253].

There are examples in which the manganese atom is η^4 -bonded to two rings with one additional unidentate ligand [241-244]. The manganese adopts a square pyramidal configuration with the unidentate ligand in the apical position.

The mean Mn-C(cp) distance of 242.8 pm found for the high-spin sandwich manganese(11) compounds is about 9.6 pm shorter than for these "clino-sandwich" derivatives (252.4 pm). Two crystallographically independent molecules have been found for $Mn(\eta^5-cp)(\eta^6-C_{23}H_{17}P)$ [252] which differ mostly by degree of distortion.

(B) Binuclear manganese organometallic compounds

Table 13 lists the available data for these compounds in the order of increasing Mn-Mn distance. The data can be subdivided into several bridge types. The crystal structure of green monoclinic $Mn_2(\mu-CO)_3(\eta^{e}-C_3Me_{e})_2$ [254] is shown in Figure 16. The three bridging carbonyl groups bring the manganese

Trans to or lammagraphic or						Rational and	0			
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] ¥[°]	Chromo- phore	[md]	M-M(pm) M-CNT ¹⁵ (pm M-L-M [¹]	L-M-L [°]	Ref
Mn ₂ (μ-CO) ₃ (β ⁵ -C ₅ Me ₅) ₂	E	P2,/c	4	972.3(6) 1426.7(2) 1674.7(2)	106.1(2)	MnC _s	(1 ⁶)Cd192.9(5) OCd214.7(5)	217.0(1) 177.6(5) 6850(2)	91.4(2)	254
$Mn_a\{\mu$ -NN(SiMe ₃) ₂ } ₂ (η^n -cp) ₂	E	p2,/c		1326.6 814.7 1538.4	108.54	MnC ₅ N ₂	Cd 213.6(9) Nd 178.5(8,3)	239.3(2) e 84.2(3)	84.2(3)	255
Mn_(µ-ro) . (ŋ'-cp)	10	Pnma	4	1820.1(3) 1080.2(2) 787.7(2)		Mn ¹¹ C ₅ N ₃ Mn ⁰ C ₆ N ₂	ON 165.6(5) (η°)Cd215.8 (η°)Cd215.8 (η°)C 216.1(4) (η°)C 216.1(4) (η°)Cd215.8(5) ONd175.2(3)	252.0(1) e e	Ũ	256
Мп ₂ (µ-NO) ₂ (NO)(NO ₂). . (ग ी-ср) ₂	B	P2,/c	4	701.3(3) 1245.3(1) 1624.6(10)	110.00(6)	Mn ¹¹ C ₆ N ₃ Mn ⁰ C ₅ N ₃	O _a N 199.2(10) (n ^a)Cd _{177.5(10)} ON 165.2(10) ON 165.2(10) (n ^a)Cd ₁ e ONd194.3(10)	252.6(10) e e	ð	257
trans-[Mn(CO)(NO)(n⁶- cp)] ₂	E	p2,/c	3	700.2(1) 1249.1(3) 802.3(2)	108.07(1)	MnC ₆ X ^f a	$\begin{array}{c} x & 172.3(4) \\ x^{s})C_{d} & 213.1(5,20) \\ x^{d} & 190.6(4,5) \end{array}$	257.1(1) 180.0(6) 84.8(1)	95.5(2,5)	258
Mn_a(CO) _s (μ-CO)(μ _a -t-bu-iae) or	P2, 2, 2,	4	1687.8(7) 1939.4(9) 908.4(3)		MnC ₄ N ₂ MnC ₃ N ₃	OCd179(2) OCd234(2) Nd 204(1,1) OCd179(2) OCd181(2) N ^d 209(1,7)	258.5(6) - e	υ	259

alline^B ş Table 13 Crystallographic and structural data for binucles 195

100 B 100

Compound	Crystal Class	Space Group	z	a{pm] b(pm] c[pm]	a{°] B{°] X[°]	Chromo- phore	[md]	M-M(pm) M-CNT ^b (pm) M-L-M [°]	L-M-L [°]	Ref
Mn_a(μ_a-tmi)(CO)6	ŧ	14	6	735.2(2) 886.3(2) 1232.4(6)	83.44(4) 85.66(3) 72.45(2)	MnC _s N ₂ MnC ₃ N ₂	OC 180.4(4,4) C 214.2(4,5) N ^d 211.0(3,2) OCd 180.1(4,12) N ^d 198.6(3,9)	261.5(1) - 79.3(1,2)	90.9(2,3.1) En 89.2(2,3.4) Es	260
Мп _s (µ _s -hdd)(CO) ₇	ţ	' Id	7	907.6(3) 917.2(4) 905.5(3)	90.49(3) 103.63(3) 96.10(3)	MnC ₆ MnC ₇	OCd e C ^d 207.3(1,2) OC e Cd 212.5(1,9) Cd 212.9(1,3)	265.4(1) - e	79.2(1) 96.3(1) e	261
Mn _a (µ-CH ₂ Ph) _a (CH _a Ph) _a . .(PMe _{a)a}	8	P2,/c	3	1209.6(2) 1008.9(3) 1514.4(3)	112.63(3)	MnC _a P	Cd 212.7(3) Cd 231.4(3,78) P 256.2(1)	266.7(1) - 70.3(2)	£	262
Mn _a (μ-CO)(μ-C _a H _a)(CO) _a . .(ŋ ^s -cp) _a	E	P2,/c	T	1325.3(5) 1576.8(7) 737.6(3)	115.80(4)	MnCa	$\begin{array}{cccc} 0C & 177.5(5,1)\\ C & 217.3(5,5)\\ C & 214.1(5,29)\\ C & 197.6(5,1)\\ 0 & C^{d} 197.6(5,1)\\ 0 & C^{d} 197.2(5,11) \end{array}$	269.1(2) e 86.0(2,1)		263
Mn _a (µ-CH _a CMe _a) _a (CH _a . . CMe _a) _a (PMe _a) _a	or	Pna2,	Ŧ	2067.2(5) 934.5(5) 1786.8(2)		MnC _e	Cd 217(3,3) Cd 236(2,13) P 267(1,0)	271.8(3) 70.3(6,7)	· —	262
{Мп(сО) ₃ (ŋ ⁵ -ср)} ₃ . ,µ-С=СНРћ)	ľo	P2,2,2,	4	1533.6(3) 1539.1(3) 799.8(1)		MnC _s	$(\eta^{\rm s})_{\rm Cd}^{\rm Cd} = (\eta^{\rm s})_{\rm Cd}^{\rm cd} = (\eta^{\rm s})_{\rm Cd}^{\rm cd}$	273.4(2) e 88.0(5)	υ	206
[Mn _z (μ-C(CO)C ₆ H₄Me-p). .(CO) ₆ (ŋ ⁶ -cp)]O.5Et₂O	£	14	2	818.9(3) 1807.7(9) 763.8(4)	95.66(4) 106.30(3) 85.47(3)	MnC ₅ MnC ₆	OCd e Cd 212.8(4) OC e OC e Cd 212.8(4)	273.5(1)	υ	264

Table 13, cont. (2)

Compound	Crystal Class	Space Group	8	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	[md]	M-M(pm) M-CNT ^b (pm) M-L-M [¹]	L-M-L	Ref
Mn ¹¹ a(μ-CH _a SiMe _a) ₂ (CH _a Si. .Me _a) ₂	t	Id		1031.1(1) 1061.0(2) 1096.3(2)	67.14(1) 86.92(1) 61.52(1)	MnC ₃ P	Cd 211.1(3) Cd 228.9(4,81) P 265.0(1)	277.2(1) _ 74.5(1)	Q	266
{Mn(CO)_2(η°-cp*))_2(μ-CH2)	5	. II	3	683.4(6) 960.2(2) 1360.5(5)	108.29(2) 92.95(5) 104.85(4)	MnCa	$\begin{array}{c} 0C & 178.5(5,16) \\ ({\bm \eta}^5)C & 215.5(8,16) \\ C^0 & 201.4(5,1) \end{array}$	277.9(1) 177.,8 87.3(2)	85.9(2,1)	267
{Mn(CO)_z(η [*] -cp)} _{\$} (μ-CH ₂) ¹ ;	1 OL	Peen	4	716.1(4) 1517.7(6) 1270.3(6) 727.5(6)		MnCa	OC 178.5(2,7) (ர °)C _d 216.3(2,13) C ^d 202.6(2,0)	279.96(11) 179.4 87.40(7)	86.39(8) I ₁	268
				1536.7(8) 1283.5(8)						
Mn ¹¹ 2(CH2C ₆ H4NMe2)4	8	Cc	æ	2192.0(40) 2318.6(14) 1398.8(6)	107.77(8)	MnC ₃ N ₂ MnC ₃ N	C 218 Nd 241(-,1) Cd 235(-,4) C 214 Nd 230 Cd 230(-,0)	281.0(3) 74.4	E	269
Mn _a (µ-CH _a SiMe _a) ₂ (CH _a Si. .Me _a) ₂ (PMePh ₂) ₂	B	P2,/c	8	1155.1(1) 1082.9(5) 2096.4(3)	104.52(1)	MnC _a P	Cd 211.7(5) Cd 229.1(5,98) P 268.4(1)	282.8(1) _ 76.1(4)	u	262
[Mn _a (CO) ₄ {µ-C(O)CH _a N _a }. .(pi-dppmm) ₂]2CH _a Cl _a	£	- 14	8	1254.9(6) 1344.7(2) 1914.0(6)	104.34(2) 95.99(3) 111.11(2)	MnC ₃ P ₂ N MnC ₂ P ₂ N	OC 180.4(10,23) C 200.1(9) P 229.5(2,0) Nd 196.7(7) OC 178.7(11,23) P 229.1(2,4) Nd 189.4(7)	289.8(2) - 97.3(3)	° o o	270

•

Table 13, cont. (3)

Table 13, cont. (4)										
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]		Chromo- phore	M-L [pm]	M-M(pm) M-CNT ^b (pm M-L-M [^o]	[°] ([°]	Ref
Mn _a (µ-AsMe _a)(CO) _a (ŋ ^s -cp)	or	Pbca	4	1115.7(8) 1266.5(8) 2250.7(14)		MnC ₇ As MnC ₄ As	OC 178(2,5) (η_{s}^{o})C _G 217(3,6) As 236.2(4) OC _G 181(2,5) As 235.0(4)	291.2(4) e 76.3(1)	ц с	271
[{Mn(CO) _a (n ⁶ -cp [*])} _a . .(μ-SEt)](ClO ₄)	E	P2 ₁ /n	4	867.6(5) 1606.2(5) 1587.2(5)	104.45(20)	MnC ₇ S	$\begin{array}{c} \text{OC} 181.5(9,15) \\ (\mathfrak{p}^{5})\text{C}_{d} 215.9(7,80) \\ \text{S}_{d} 225.6(2,14) \end{array}$	293.0(1) e 81.0(1)	84.5(3,5) q	272
Mn _a ⁰ (CO) ₆ (p ⁸ -C ₆ H ₆)	ũ	pbca	x0	1009.6(3) 2382.5(8) 1147.2(4)		MnC ₇	OC 179.0(14,11) (ரீ)C 219.6(11,125)	304.5(2)	Q) I	273
${}^{Mn^{T2}}_{a}(\mu^{-Cl})_{a}(n_{a}^{5}-cp^{*})_{a}.$.(PEt _a) ₂	or	Pbca	xo	1369(3) 1531.4(2) 1440.2(3)		MnCsPCl	C e P. 256.7(2) Cl ^d 248.1(2,1)	351.4(2) 217.1(10) 90.2	Û	274
Mn₂(µ-epb)CO)e	or	Pbca	8	1429(1) 1670(1) 1541(1)		MnC ₇ B	OC 178(1,2) Cd 216(1,6) Bd 225(1,1)	353.3(2)	90.0(6,2.4)	275
[{Mn(CO) _a (ŋ ^a -cp)} _a . .(μ-CH _a CCH _a)]						MnCa	$ \begin{array}{c} 0 \\ (\eta_{5}) \\ C \\ C \\ C \\ C \\ 2 \\ 2 \\ 14.6(3) \\ C \\ 2 \\ 14.6(3) \\ C \\ 14.6(3) \\ $	⁻ 380 e 131.3(4)	87.1(3)	276
Mn _a (μ-Cl) _a (CH _a SPh) _a (tmeda)	2 tr	- Id	-	840.3(2) 1140.1(4) 1156.9(4)	98.19(3) 110.69(2) 98.40(3)	MnN ₂ Cl ₂ C	C 217.7(9) N _d 228.4(10,50) Cl ^d 255.6(3,145)	380.6(3) -	£	277
Mn ₂ (µ- g⁶-C 4H4N(CO) ₆ (acpr)	8	P2,/c	4	897.2(2) 831.7(1) 2446.7(5)	97.38(2)	MnC ₇ N	OC 179.0(5,7) C 214.4(5,8) N ^d 212.0(4)	384.0(1) e e	Ð	278

Table 13, cont. (5)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] \$[°]	Chromo- phore	M-L [mg]	M-M(pm) M-CNT ^b (pm) M-L-M [*]	L-M-L [°]	Ref
						MnC ₃ N ₂ O	OC 179.5(5,19) N 202.2(4) O 206.6(3) N ^d 210.4(4)			278
{{mr ^r (CO) _a } _a (μ-Asme _a). .(μ-As _a me _a F _e C ₄)]	4	- 4	8	958.0(4) 1527.9(6) 929.2(3)		MnC _a As _a MnC _a As	$\begin{array}{c} \text{OC} & 174(3,4) \\ \text{AS} & \text{d} 237.1(4,17) \\ \text{Me}_{2}\text{AS} & \text{d} 245.5(4,1) \\ \text{OC} & 179(3,1) \\ \text{OC} & 179(3,1) \\ \text{C} & 210(2,3) \\ \text{Me}_{2}\text{AS} & \text{d} 250.7(4) \end{array}$	410.8 - 111.8(1)	93.4(10,8) s, 92.0(11,6.0) s ₂	279
[{Mn(CO) ₄ } ₂ (μ-AsMe _a . . (μ-AsMe _a F₄C₄)]	E	P2,/n	4	904.0(3) 1355.2(4) 1851.7(5)	90.52(2)	MnC ₆ As MnC ₄ As ₂	OC 183.3(9,23) C 202.7(7) Me ₂ As d248.9(2) OC 182.7(9,25) As d241.0(2) Me ₂ As d250.8(2)	447.5 - 127.15(5)	92.4(4,1.7) 172.4(4) 92.1(4,2.3) 172.1(4) ta	280
[{Mn(CO) _a (η ^s -cp)} _a . .(μ-PC _a H _a)]						MnC7P	OC e (ự 5)C 2 P ^d 218.4(2,5)	e e 138(1)	ບບ	281
[{Mn(CO) _a) ₂ (µ-B(Ph). .C ₄ H ₃ (Et)]	or	Pbca	æ	1429(1) 1670(1) 1541(1)		MnC ₇ B	OC ₁ 178 Cd 215 B ^d 224			282
[{Mn(CO) ₂ (g ⁶ -cp [*])} ₂ (μ-N ₂)]	8	P2,/n	3	800.4(2) 1034.4(3) 1013.5(3)	97.69(4)	MnC ₇ N	$\begin{array}{c} \text{OC} & 178.0(7,2) \\ (\pmb{\eta}^{\text{a}})\text{C}_{\text{A}} & 214.5(7,32) \\ \text{N}^{\text{A}} & 187.5(5) \end{array}$	ų, t	90.5(3) u	283
{{Mn(CO) ₂ (η ⁵ -cp)} ₂ (μ-S ₂)]	£	P2,/c	3	951.8(7) 702.7(5) 1181.6(8)	99.56(5)	MnC ₇ S	$({\bm{r}}^{\rm s})_{\rm Cd}^{\rm Cd} {}^{\rm 179(2,0)}_{\rm Cd} {}^{\rm 219(3,9)}_{\rm Sd} {}^{\rm 216.7(4)}_{\rm Cd}$	I QJ	89.1(8) v	284

Table 13, cont. (5)

;

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] y [°]	Chromo- phore	[md]	M-M(pm) M-CNT ¹ ,(pm) M-L-M [⁹]	L-M-L [°]	Ref
$[{Mn(CO)_{a}(n_{a}^{n}-cp)}_{a}(\mu-P(H)$.(Ph)P(H)(Ph)]	£	P2,/c	2	1095(1) 1145(1) 1186(1)	124.73(5)	MnC ₇ P	$(\eta^{5})_{C}^{CC} \frac{178.5(9,3)}{213(1,2)}$	Q	93.4(4) x	285
[{Mn(CO) _a (n ^s -cp) _a (μ-As(H) .(Ph)As(H)(Ph)]	E	P2,/c	2	1058(1) 1148(1) 1200(1)	120.85(8)	MnC ₇ As	$(p_{\rm AS}^{\rm o})C_{\rm AS}^{\rm 178(1,1)}$	Q I	93.8(5) y	286
Mn _a (CO) ₇ (PPh _a){(CO)C _a H _a . .PPh _a }	E	P2,/c	4	1118.5(2) 2692.2(4) 1460.6(3)	115.90(1)	MnC ₄ PO	OC 176.1(15,65) C 204.1(12) P 236.4(4) O 906.4(8)		91.7(7,2.6) z1	287
						MnC _s P	OC 179.8(17,26) C 201.6(12) P 230.4(4)		92.2(7,3.0) 172.6(6) ^z a	
Mn _a (CO) ₆ (PPh ₃) ₂ {(CO)C ₆ H ₃ .PPh ₂ }	£	- 14	8	1084.7(2) 1378.2(3) 1937.0(4)	97.79(2) 96.77(2) 103.03(2)	MnC ₄ PO	OC 175.8(27,20) C 200.1(21) P 236.7(7)		88.8(11,1.1) ^Z a	287
						MnC ₄ P ₂	O 209.4(13) OC 178.4(25,41) C 205.8(21) P 229.8(8,24)		92.3(10,4.0) 168.1(10) ^Z 4	
Mn _s (CO) ₇ (PPh _a){(CO)C ₆ H _a . .PPh _a }	E	C2/c	æ	1076.3(2) 3471.3(5) 2147.9(3)	92.93(1)	MnC _s O	OC 183.2(10,27) C 204.5(7) O 205.3(5)		91.6(4,3.3) 175.9(4) ^{Ze}	288
						MnC4P2	OC 183.3(9,15) C 204.0(7) P 230.7(2,31)		93.4(3,4.8) 173.1(3) Z ₆	
Mn _a (CO) _e { ŋ ⁿ -C ₄ H ₄ N(pcr)} ^{Z₇}	t.	- 14	4	1937.79(5) 1672.3(6) 680.0(3)	85.29(3) 83.66(3)	MnC ₇ N		11	91.5(7,1)	289

Table 13, cont. (6)
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	M-L [pm]	M-M(pm) M-CNT ¹⁵ (pm) M-L-M [°]	L-M-L [°]	Ref
						MnC ₃ O ₂ N MnC ₇ N	OC 178(1,1) N 209(1) O 200.5(9,16) OC 175(2,2) (7 [*])C 213(2,2) N 213(2,2) OC 102(1)	1111	89.5(6,6) 2 ₈ 90.5(8,2.3)	289
[{Mn ^t (CO) _a (ŋ ⁵ -cp)} _a -	E	P2,/c	5	1115.6(6)		MnC ₇ P	OC 175.7(5,6)		90.8(3)	290
{(\L-PMe_2)_20}]	ł	l'ad	o	841.9(6) 1469.9(18)	130.9(1)		$(\eta^{\rm b})C$ e P 217.8(1)	11	Z10 01 7/6 1 71	101
[Mn ⁻ (CU) ₃ (n ⁻ ⁻ -cp)) ₂ - -{(µ-PMe₂) ₂ S)]	5	1082	α	1665(1) 1569(1) 1749(1)		MnC ₇ P	$(\eta^{\circ}) C [15(1,2)] O C [15(1,1)] O C [15(2,3)] O C C C C C C C C C C C C C C C C C C $		91.((0,1 <i>(</i>) Z _{1.2} 90.4(9,2.0) Z _{1.3}	TRZ
[Mn(CO) ₃ (ŋ °-C ₁₀ H ₆)] ₂	E	P2,/c	4	1448.2(1) 1041.6(2) 1489.6(2)	93.56(1)	MnC ₆	OC 179.31(26,65) (ரீ) 215.06(24,404	- (7	92.01(12,3.03)	292
[Mn(CO)(NO)(g ^{s-cp)} . .(CONH ₂)] ₃	E	P2,/n	4	822.8(5) 918.5(6) 1165.7(6)	99.23(5)	MnC ₇ N	OC 178.3(6,12) (η^{5}) C 214.4(5,15) ON 166.3(5,12) M_{2} NOC 202.6		Z1.4	293
[{Mn(CO) ₂ (η ⁵ -cp)} ₂ . (μ- η⁴- C ₅ H ₆)]	E	P2,/c	4	1226(1) 1144(1) 1231(1)	102.30(8)	MnC _o	OC 176.9(9,13) OC 214.3(9,29) (η^{5}) C 214.3(9,29) (η^{5}) C 221.1(8,35)	1 1	89.5(4,1.5)	294

Table 13, cont. (7)

8
cont.
13,
Table

Compound	Crystal Class	Space Group	z	a{pm} b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	[md]	M-M(pm) M-CNT ^b (pm M-L-M [^]	.) [°] L-M-L	Ref
Mn ₂ (CO) ₆ (μ- η ¹⁰ -C ₁₄ H ₆ Me ₂)	or	P2, 2, 2,	4	967.77(14) 1309.99(20) 1563.85(26)		MnCa	OC 178.4(17,48) C 218.8(14,216	-	92.9(7,6.7)	295
Мп _а (CO) _s (ŋ ^s -cp) ^{Z1s} {µ-SC(Ph)C _s H₄}	t	- 14	2	1000.7(3) 1000.9(3) 1172.9(3)	92.26(3) 109.19(3) 112.56(3)	MnC ₇ S MnC ₈	$(\eta_{\rm s}^{\rm s}) \subset \begin{array}{c} 179.1(7,1) \\ 214.5(8,12) \\ {\rm s} \\ {\rm s} \\ 219.3(2) \\ {\rm oc} \\ 180.1(7,7) \\ {\rm c} \\ {\rm c} \end{array}$		92.3(3,2.6) ^{2,15}	296
[{Mn(CO) _a (n ^e -cp ⁺)} _a . (µ _a -cbdcp)]	B	P2,/n	61	1123.9(7) 1107.4(3) 897.5(4)	93.49(6)	MnCa	OC 176.2(12,3) (p ^a)C 216.4(12,34) C 187.8(8)	1 1	89.6(4,3.3)	297
Mn ₂ (CO) ₆ (μ-bcpf)	ŧ	- Id	73	1025.9(7) 1084.8(8) 1468.5(10)	98.47(6) 92.03(5) 98.99(6)	MnCa	OC 179.2(4,10) C 213.9(4,20)	ı	92.9(2,1.1)	298
Mn _s (CO) _n (µ-bcpp)	B	C2/c	4	2450.9(2) 2955.40(5) 2081.2(2)	90 141.502(4) 90	MnC _a	OC 179.5(6,13) C 214.8(7,25)	ı	92.6(3,2.4)	298
a The mean value for chen	nically id	entical and	gle c	r distance.	The first	number in p	arenthesis is the e.	s.d. and the	second	

is the maximum deviation from the mean.

CNT, centroid of the multidentate ring ligand. The chemical identity of coordinated atom or ligand.

The bridge atom (ligand).

Not given.

X labelled the disordered C and N atoms. The value of (O)C-Mn-C(O) angle; (O)C-Mn-C = 94.2(2) - 146.1(2)°; (O)C-Mn-N = 96.4(2) - 160.8(2)°; C-Mn-C = 38.3(1)°; C-Mn-N = 38.4(1,2) and 66.3(1,0)°; and N-Mn-N = 71.7(1)°. The value of (O)C-Mn-C(O) angle; (O)C-Mn-N = 96.4(2) - 163.4(2)°; and N-Mn-N = 76.9(1)°. The value of (O)C-Mn-C(O) angle; (O)C-Mn-N = 96.4(2) - 163.4(2)°; and C⁴-Mn-N = 78.9(1)°. C-Mn-C⁴ = 110.7(2,2.1)°; C-Mn-P = 119.2(2)°; C⁴-Mn-C⁴ = 109.7(2)°, and C⁴-Mn-P = 90.4(2) and 113.5(2)°. Mn-Mn-Mn = 134.49(-,6)°; (O)C-Mn-C(O)⁴ = 84.5(2,1)°; C⁴-Mn-C(O) = 80.0(2,9)°; C⁴-Mn-C(O)⁴ = 94.0(2,3)°; C-Mn-C⁴ = 38.9(2,2)°; C-Mn-C(O)⁴ = 92.54(-,34)°. C-Mn-C⁴ = 110.612(1,1.506)°; C-Mn-P = 123.123(1)°; C⁴-Mn-C⁴ = 111.108(1)°; and C⁴-Mn-P = 85.86(1) and 114.115(1)°. မင်္ဂ က ကို

ы. Б.

: .	At 143K. Mn-Mn = 129.0(-,11.3) ⁰¹ (O)C-Mn-C(O) = 89.0(3,1.0) ⁰ ; (O)C-Mn-C = 78.1(3,8) and 115.3(3,1.1) ⁰ .
<u>-</u>	At 130K; (O)C-Mm-C ² = 77.65(6) and 113.82(6) ² .
4 E	At room temperature. C ^{ra} -Mn-C rd = 105.6°.
g	$C-Mn-C^{d} = 113.7(3)$ and $122.4(3)^{\circ}$; $C-Mn-P = 107.4(4)^{\circ}$; $C^{d}-Mn-C^{d} = 103.9(2)^{\circ}$; and $C^{d}-Mn-P = 103.8(3.1.0)^{\circ}$.
6	$(O)C-Mn-C(O) = 90.2(4)^{\circ};$ $(O)C-Mn-P = 89.5(3,1.2)^{\circ};$ $(O)C-Mn-N = 98.8(4)$ and $171.0(4)^{\circ};$ N-Mn-P = 89.9(2.2)°, and P-Mn-P = 177 3(1)°.
" 0	(0)C-Mn-C(0): (0)C-Mn-C = 86.1(4) and 179.8(1)°: (0)C-Mn-N = 100.0(3) and 165.9(3)°: (0)C-Mn-P = 91.0(3.3.0)°:
•	$C-Mn-N = 79.9(3)^{\circ}$; $C-Mn-P = 86.8(2,4)^{\circ}$; $N-Mn-P = 90.5(2,1)$; and $P-Mn-P = 173.1(1)^{\circ}$.
đ	$(0)C-Mn-C(0) = 88.4(9)^{\circ};$ and $(0)C-Mn-As = 88.0(6)$ and $109.4(6)^{\circ}$.
p2	$(0)C-Mn-C(0) = 92.9(9,2.8) and 172.6(9)^{\circ}$.
ď	$(0)C-Mn-S = 86.2(2,3.4)$ and $115.4(2,1.8)^{\circ}$.
ទ	N-Mn-N = 79.0(3) ⁰ ; Cl-Mn-Cl = 86.8(4,2.9) ⁰ and N-Mn-Cl = 110.0(4) ⁰ .
ທົ	(0) C-MI-AS = 32.8(1,1.4) and 1(1.1(8,3)) (U) C-MI-AS = 33.6(1,0) and 1(3.3(8)) AS-MI-AS = 31.3(1)) and AS-MI-AS = 20.6(1,0)
ú	$85.6(1,3)^{-1}$ (O)C-Mn-C = 81.0(8) - 162.9(10)°: (O)C-Mn-As ^d = 83.2(7.1.0) and 167.7(7)°: C-Mn-As ^d = 86.5(5) - 109.8(5)°.
°	The values of cist and transformed (0)C-Mn-C = 88.6(4,4.1) and 177.9(4)°. (0)C-Mn-As ^d = 86.4(3.1.1)
	and 176.8(3) ⁶ : and C-Mn-As ⁴ = 93.2(2) ⁶ .
ť,	The values of cis- and trans- (0)C-Mn-C(0) angles; (0)C-Mn-As = 89.0(3,8) and 179.1(10)°; (0)C-Mn-As ⁻¹ = 87.0(3,3.7) and
	$177.6(3)^{\circ}$; and As-Mn-As ⁴¹ = 90.91(5)°.
2	$(O)C-Mn-N = 96.1(3,2)^{\circ}$.
>	$(0)C-Mn-S = 34.0(6,6)^{\circ}$.
×	(0)C-Mn-As = 93.0(3,6)°.
~	(O)C-Mn-As = 92.6(3,1.0)°.
۲z	$(O)C-Mn-C; C-Mn-P = 96.0(4)^{\circ}; C-Mn-D = 79.4(4)^{\circ} and P-Mn-O = 86.1(2)^{\circ}.$
Z .2	The values of cis- and trans- (0)C-Mn-C(0) angles; (0)C-Mn-C = $87.2(7,6.0)$ and $174.5(6)^{\circ}$; (0)C-Mn-P = $91.3(5,2.0)$ and $171 = e(5,0) = 20.2(-Mn-D) = 91.3(5,2.0)$ and
	11110001 and Commit = 021 (1012). (O)C-MarC = 021 (1012) and 175 4(10)0, (O)C-MarD = 02 3(0 1 0) and 177 9(8)0, (O)C-MarO = 05 4(0 5 8) and 171 4(0)[), C-Mar
4	$33.3(6)^\circ$; O-Mn-P = 87.4(4)° and O-Mn-C = 79.5(7)°.
Z.4	$(O)C-Mn-C = 88.2(9,7,8)$ and $171.9(10)^{\circ}$; $(O)C-Mn-P = 90.4(8,2.4)$ and $176.9(3)^{\circ}$; and $C-Mn-P = 82.7(7)^{\circ}$.
2ª	The values of cis- and trans- (O)C-Mn-C(O) angles; (O)C-Mn-C = 89.6(3,3.3) and 172.7(3)°; (O)C-Mn-O = 91.0(3,1.9) and
	$172.6(3)^{\circ}$; and C-Mn-O = 79.8(2)^{\circ}.
26	$(0)C-Mn-C = 87.9(3,7.0)$ and $170.7(3)^{\circ}$; $(0)C-Mn-P = 90.6(2,5.1)^{\circ}$; $C-Mn-P = 88.0(2,5.6)^{\circ}$; and $P-Mn-P = 175.8(1)^{\circ}$.
Z_7	At 153K, there are two crystallographically independent molecules.
2. 5	$(0)C-Mn-N = 92.0(5,2.1)$ and $176.9(5)^{\circ}$; $(0)C-Mn-O = 91.9(5,2.2)$ and $177.0(5,1.1)^{\circ}$; $O-Mn-N = 87.0(4,1.3)^{\circ}$; and $O-Mn-O = 86.2(5,1.1)^{\circ}$; $O-Mn-N = 92.0(5,1.1)^{\circ}$; $O-Mn-N = 92.$
2 ⁸	$(0)C-Mn-N = 92.6(6,2.6)$ and $177.5(6)^{\circ}$; $(0)C-Mn-O = 92.8(5,1.9)$ and $177.0(5,6)^{\circ}$; $0-Mn-N = 87.0(4,8)^{\circ}$; and $0-Mn-O = 85.7(3)^{\circ}$.
5	3 (U/D-MMIFF = 31.44/4,0) . 10/D-2 metrics in the second second second second second second second second second second second second second
	1. Increase wo crystanographically independent molecules.
	z = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	$(O)C-Mn-N = 98.9(3,3.9)^{\circ}; (O)C-Mn-C = 95.5(2,6.8)^{\circ}; C-Mn-N = 94.7(2,8)^{\circ}.$

Figure 16. Structure of $Mn_2(\mu-CO)_3(n_2^{5-}C_5Me_5)_2$ Reproduced with permission from Chem. Ber. [254]

atoms within 217.0(1) pm, with Mn-C-Mn angles of 68.5(2)^o. This is the shortest Mn-Mn distance found in a manganese complex.

In several cases two ligands serve as the bridges, for example: two NNSiMe₃ [255]; two NO [256,257]; NO and CO [258]; two CH₂Ph [262]; CO and $C_{3}H_{4}$ [263]; two CH₂CMe₃ [262]; two CH₂SiMe₃ [262,266]; two CI [274,277] and $Mn_{2}(CH_{2}C_{6}H_{4}NMe_{2})_{4}$ [269]. The Mn-Mn distance decreases from 239.2(2) pm [255] to 380.6(3) pm [277], representing a change in bond order from two to zero respectively. Contrary to expectation there is no relationship between Mn-Mn distance and Mn-L-Mn bridge angle, probably due to the variety of bridging ligands involved.

In two cases, $Mn2(\mu_2-tmi)(CO)_e$ [260] and $Mn_2(\mu_2-thd)(CO)_7$ [261], π -type organic ligands are used for bridging. The Mn-Mn distance in the former (261.5(1)pm) is shorter than that in the latter (265.4(1)pm).

There are examples of manganese centres being bridged by one ligand atom: an organic carbon [206,264,265,267,268,276]; sulphur [272]; arsenic [271,279] and phosphorus [281]. Here there is a tendency for the expected elongation of the Mn-Mn distance with opening of the Mn-L-Mn bridge angle. For example, 273.4(2) pm and 88.0(5)^o [206] compared to 380 pm and 131.3(4)^o [276], respectively.

Another type of bridge is represented by $Mn_2(CO)_4[\mu-C(O)CH_2N_2](\mu-dppm)_2.2CH_2CI_2$ [270], where two non-equivalent manganese atoms, one with MnC_3P_2N chromophore and the other with a MnC_2P_2N chromophore, are held together by a diazomethane ligand using two nitrogen atoms to bridge assymmetrically. An additional two bidentate dppm ligands serve as extra bridges. The manganese atoms in this case are 289.8(2) pm apart.

In orthorhombic $Mn_2(CO)_e(\eta^e-C_eH_e)$ [273] the eight π -electrons of the cyclooctatetraene ligand are factored into two cis-diene systems over two MnC_3 moleties, with an Mn-Mn distance of 304.5(2) pm.

In another two orthorhombic examples [275,282], the skeletal unit is a pentagonal bipyramidal metallaocarborane cluster of the closo type. In each, two $Mn(CO)_3$ moieties are held together by four carbon atoms and the boron of the borazole ring. In dark purple $Mn_2(CO)_6(\int_{0}^{5}-C_4H_4N)(pcr)$ [289] a molecule of π -pyrrolyltricarbonylmanganese is N-coordinated with the second manganese atom via the donor electron pair of the pyrrolyl nitrogen atom. The completion of the hexacoordination sphere uses three CO ligands and the formation of a six membered chelate metallocycle, involving an oxy-oxygen and one of the oxygens of the O-nitro group of the picrate anion. A similar structure has been found for $Mn_2(CO)_6(\int_{0}^{5}-C_4H_4N)(acpr)$ [278].

In another unique case [280], two $Mn(CO)_4$ groups are bridged by an AsMe₃ group (Mn-As = 250.8(2) and 248.9(2) pm), and by Mn-As(Me)₂-C=C-Mn (Mn-As = 241.0(2) pm and Mn-C = 202.7(7) pm. F₂C-CF₂

Single bridging via two atoms is observed in a number of cases: Mn-N-N-Mn [283]; Mn-S-S-Mn [284]; Mn-P-P-Mn [285]; Mn-As-As-Mn [286] and Mn-C-O-Mn [287,288].

A similar bridge structure involving three atoms is observed where two MnC_7P chromophores are linked by Mn-P-X-P-Mn, where X = O [290] or S [291].

In the remaining examples [292-298] the manganese atoms are joined by multidentate organic ligands, as shown in Figure 17.

The data shows examples of mixed valencies, Mn(II) and Mn(0) [256,257]. Two crystallographically non-equivalent molecules have been found in two cases [289,291]. There are several examples in which two non-equivalent manganese atoms are present [278-280,287,288,296].

Both electronic and steric factors influence the Mn-L bond distance which elongates in the order: 178.5 pm (mean, CO) <202.6 pm (CONH₂) <211.9 pm $CH_{z}CCH_{z}$) <212.7 pm ($CH_{z}Ph_{2}$) <217.7 pm ($CH_{2}SPh$); and 165.8 pm (NO) <199.2 pm (NO₂) <228.4 pm (tmeda). In general the Mn-L(bridge) bond distances are longer

Figure 17. Structure of $[{Mn(CO)_2(n_c^3-cp^*)}_2(\mu_2-cbdcp)]$ Reproduced with permission from Z. Anorg. Allg. Chem. [297]

than the Mn-L(terminal) distances, for example: 206.7 and 178.5 pm (L = CO), 185.4 and 165.8 pm (L = NO), 216.6 and 212.7 pm (L = C-Ligand), respectively.

In the binuclear examples where the manganese atoms are bridged by one or two ligating atoms, there is a tendency for the Mn-Mn distance to elongate as the Mn-L-Mn angle opens. The Mn-L distances also tend to be longer in the binuclear than in the mononuclear derivatives. For instance, the mean value of the Mn-C(CO), Mn-C(C-ligand) and Mn-P distances are 178.5, 212.7 and 249.4 pm respectively for the binuclear compounds (Table 13), compared to 178.0, 187.0 and 222.6 pm for the mononuclear compounds (Table 11). On the other hand the mean Mn-C(cp) distance of 213.7 pm found in the binuclear organometallics is somewhat shorter than that found in the mononuclear ones (215.0 pm).

(C) Tri- and Tetranuclear organometallic compounds

The crystallographic and structural data for these compounds is collected in Table 14, arranged in increasing Mn-Mn distance and degree of aggregation. The crystal structure of $[Mn_3(\mu_3-NH)(\mu_2-NO)_3(n^5-cp^*)_3](BF_4)$ [299] is shown in Figure 18. The central $Mn_3(NO)_3$ core is an equilateral triangle of metal atoms triply bridged by three nitrosyl ligands along the edges (Mn-N = 186.0(3)pm). The

Table 14 Crystallographic s	and struch	ural data	for	tri- and tel	tranuclear n	nnganese or	ganometlalic compour	ida ⁿ abi		
Compound	Crystal Class	Space Group	z	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	[md]	M-L-M M-L-M [°]	M-M-M L-M-L [^]	Ref
[Mn ₃ (μ ₃ -NH)(μ ₂ -NO) ₃ . .(η ⁶ -cp ⁴) ₃].(PF ₈)						MnC _s N _a	(n ^b)C ^b d ON ^c 186.0(3) HN ^c 187.2(3)	250.27(7) d 83.95(12)		299
Mn _a (μ ^a -cp) _a . .(η ^a -cp) _a	B	P2,/c	-	1334.1(4) 795.1(2) 1683.7(7)	107.73(3)	MnC ₅ N ₃	C 215.1(8,25) (μ_a)N ^C 184.8(4,9) (μ_3)N ^C 192.9(4,12)	250.6(1,4) 85.4(2,4) 81.0(2,2)	60.00(3,14) 95.0(2,3.3)	300
[Mn ₃ (μ ₃ -NOH)(μ ₂ -NO) ₃ . .(η ⁶ cp [‡]) ₃](BF ₄)		1				MnCaNa	(η ⁵)C d (μ ₂)N ^C 185,6(4) (μ ₃)N ^C 187,3(3)	250.83(9) d 84.1(2)		299
Mn _a (µ₄-MeC _s H _e)₄	tr	- 14	8	693.7(1) 742.7(1)	83.54(1) 83.77(1) 64.16(1)	Mn ^{TT} C4	C ^C 233.4(8,13)	251.6(2,1)	177.51(6) 109.56(27,8.79)	301
				(0)0.4607	(1)01.00	Mn ^r C _{1 o} (2x)	Cc 210.3(8,58) C ^c 215.7(8,9)			
Mn ¹¹ 3(µ ₂ "mes) ₄ (mes) ₂	ţ	- 14	2	1285.0(3) 2032.7(4)	95.11(2) 114.00(2) 98.77(3)	MnC.	C ^c 234(1,1)	285.1(3,0)	178.8(1) 109.9(4,15.1)	302
				(c)).0¥11	17111-00	MnC ₃ (2x)	Cc 211(1,1) C ^c 220(1,2)		119.4(4,13.2)	
Mn _s (μ-ŋ ^s -C4H4N) ₂ (CO) ₆ I	8	P2,/c	4	1104.0(2) 1496.0(2)	106.15(1)	MnC _a N _a I	OC 181(1,3) 1,272.2(2)	385.3(2,37)		303
				1402.8(2)		MnC ₇ N(2x)	N^{-} 211.7(8,2) OC 180(1,4) C 213(1,3) N^{c} 213.4(8,3)			
Mn ₃ (CO) ₆ (µ-ҧ ⁵ -С₄H ₄ N) ₈ . . (µ-n-BuCO)	E	P2, /n	4	850.3(1) 1365.7(3)	100.84(2)	MnC ₃ N ₂ O	OC 177(4,8) 0 198(2)			304
				2118.5(4)		MnC ₇ N	$n^{2} 211(3,0)$ OC 168(4,7) (η^{2}) C 217(3,3) N 217(3)			

Ref	304	305	306	306	
M(PM) M-M-M L-M L-M-L °] ['']		5.3(5,1.9)	7.5(3) 8.8(1,1)	2.8(1)	and the second is
M M		,46) 9) ,93) ,27) 6)	1) 28 ⁽	1) 13	e.s.d.
[md]	OC 169(4,3) ($\eta^{\rm c}$)C 218(4,7) N 216(3) BuOC 196(3)	$\begin{array}{c} \text{OC} & 179.6(14\\ \text{O} & 202.0(8)\\ \text{N}^{\text{C}} & 209.9(9)\\ \text{N}^{\text{C}} & 209.9(9)\\ \text{OC} & 173.6(20\\ \text{OC} & 173.6(20\\ \text{N}^{\text{C}} & 211.9(14\\ \text{N}^{\text{C}} & 210.1(9)\end{array} \end{array}$) OC d (n ⁵)C d As ^c 224.3(3, k) OC d (n ⁵)C d (3 , 40, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	$ \begin{array}{c} \text{OC} 181(2,3) \\ \text{OC} 216-217(3) \\ \text{As}^{\text{c}} 227.1(4,3) \end{array} $	rrenthesis is the
Chromo- phore	MnC ₇ N	MnC _a N ₂ O MnC ₇ N(2x)	MnC ₇ As(2x MnC ₆ As ₂ (2:	MnC ₇ As	umber in pa
α[°] β[°] ¥[°]		97.28(3)	113.75(6)	111.31(9)	The first
a{pm] b[pm] c[pm]		1553.2(5) 959.4(3) 2160.9(8)	946.0(6) 1289.6(6) 2738(6)	1919(3) 988(1) 1643(2)	r distance. gand.
2		4	4	4	r lig
Space Group		P2,/c	P2,/c	C2/c	tical ang un. I atom o
Crystal Class		E	E	E	ically iden om the mes coordinated
Compound		Mn ₃ (CO) ₈ (μ- η ^s -C ₄ H ₄ N) ₂ . . (dpac)	[{Mn(CO) ₂ (n ⁵ -cp [*])} ₄ . .(µ ₃ -As) ₂]	{{Mn(CO) ₂ (η ⁵ -cp)}. .(μ ₂ -As) ₂]	a The mean value for chem the maximum deviation fr b The chemical identity of c The bridge atom (ligand) d not given.

Table 14, cont. (2)

Figure 18. Structure of $[Mn_3(\mu_3-NH)(\mu_2-NO)_3(n_3^{5}-cp^{*})_3](PF_6)$ Reproduced with permission from J. Amer. Chem. Soc. [299]

cyclopentadienyl rings are located off the apices of the metal triangle. The Mn-Mn bond distance of 250.27(7) pm is the shortest of the trinuclear derivatives. Two other similar derivatives have slightly longer Mn-Mn distances, 250.6 pm [300] and 250.83(9) pm [299].

An almost linear array of three manganese atoms is found in two cases with angles of $177.51(6)^{\circ}$ [301] and $178.8(1)^{\circ}$ [302], and average Mn-Mn distances of 251.6(2,1) and 285.1(3,0) respectively.

In a bright orange-red trinuclear iodide complex [303] two $Mn(CO)_3(\P^{s}-C_4H_4N)$ moieties act as N-ligands at the third (and central) Mn atom (Mn-N = 211.7(8,2) pm, which also coordinates the iodide (Mn-I = 272.2(2)pm) and three CO groups (Mn-C = 181(1,3) pm. The Mn-Mn distance of 385.3(2,37)pm rules out a metal-metal bond in this case. There are two other examples with the same outer chromophores [304,305].

There are two examples of tetranuclear complexes bridged by arsenic. In black $[Mn(CO)_2(\eta^5-cp^*)]_4(\mu_3-As)_2]$ [306] each arsenic bridges three metal atoms in a trigonal planar array. For monoclinic $[Mn(CO)_2(\eta^5-cp)]_4(\mu_2-As)_2$ [307], the structure of which is shown in Figure 19, a diarsenic bridge links two pairs of metal atoms.

Figure 19. Structure of $\{Mn(CO)_2(n_2^{5}-cp)\}_4(\mu_2-As)_2$ Reproduced with permission from Organometallics [307]

The mean value of the Mn-C(cp) distances is longer for the trinuclear compounds than was observed for the binuclear ones (213.7 pm and 215.1 pm respectively). By contrast, the mean Mn-C(CO) distance in the former (175.8 pm) is shorter than in the latter (178.5).

(D) Hetero-binuclear organometallic compounds

The data for these compounds is shown in Table 15, and can be subdivided by bridge type. In several cases a manganese atom is directly bonded to another metal atom without a ligand bridge, for example Mn-Ge [312] with a bond distance of 252.4(4) pm, and three examples of Mn-Sn [313-315]. Another three examples involve direct Mn-Mo bonds [320-322], and other transition metal examples include Mn-Re (297.2(1) pm) [327], Mn-Fe(284.0(4) pm and 284.5(4)pm [334] and Mn-Pt (265.9(2)pm) [347].

In several cases, a single bridge is found, for example: H atom [310,311,-319]; a carbon donor [318,323,326,329,331,333); iodine between Mn and Pb moieties [343]. As the bridge angle Mn-L-M opens, the Mn-M distance increases, as expected: $58.2(1)^{\circ}$ and 260.3(1)pm Mn-I-Pt [343]; $79(1)^{\circ}$ and 281.7(3)pm Mn-C(CO)(Ph)-Re [329]; 141(5)° and 333.0(2)pm Mn-H-Nb [319].

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	Mn-L [mq]	(O) C-Mn-C(O) cis-[°] trans-[°]	Ref
Mn{C(OAlBrBr_)CH_3}(CO)_4	8	P2,/c	4	683.5(2) 1637.4(6) 1227.8(4)	94.18(7)	MnCsBr	OC ^b 185(2,6) C 195(2) Br ^c 258.0(4)	90.7(9,1.6) 177.0(1) d	308
Me_Ga(dmpz)(tpe)Mn ¹ (CO)_	t	- Iđ	3	949.11(5) 1043.23(6) 1176.18(7)	86.17(1) 69.547(5) 81.402(4)	MnC _a NOS	OC 179.9(4,10) N 207.7(3) S 238.9(1) O ^C 204.7(2)	88.6(2,5) e	309
(nc-cp*)(CO)_Mn(H)SiFPh_2	E	P2,/c	4	1622.6(8) 703.2(3) 2020.3(14)	128.55(3)	MnC7HSi	$ \begin{array}{c} \text{OC} & 178.9(3) \\ \textbf{(p^{n})C} & \textbf{d} \\ \text{H} & 156.9(4) \\ \text{Si} & 235.2(4) \end{array} $	89.7(1) f	310
(ncp*)(CO) _s Mn(H)SiCl _a	a	P2,/C	4	1206.6(5) 845.3(3) 1638.6(6)	131.85(3)	MnC ₇ HSi	$ \begin{array}{c} 0C & 179.4(7,4) \\ (p^n)C & 211.5-214.0(6) \\ H & 147(3) \\ Si & 225.4(1) \end{array} $	87.6(3) g	311
Mn(CO) " GePh. "		A2/a	30	1123(2) 1148(4) 3310(20)	94(1)				108
MePh(1-np)Ge(CO)_Mn{C(Me)(OEt)]) or	P2,2,2,	4	929.4(3) 3205.1(10) 809.9(2)		MnC, Ge	OC 175.9(26,42) C 195.1(20) Ge 252.4(4)	89.6(10,8) 166.6(10) h	312
Ph _a SnMn(CO) a	E	C2/c		1591(1) 1632(1) 3312(2)	95.0(1)				313
Me _a SnMn(CO) .	E	P2,/n	4	701.8(9) 1338.9(17) 1466.2(20)	114.30(3)	MnC _s Sn	OC 180.6(12,48) Sn 267.4(2)	94.2(6,13.4) 168.7(6,1.6)	314

Crystallographic and structural data for heterobinuclear manganese organometallic compounds^a Table 15

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	Mn-L [pm]	(O)C-Mn-C(O) cis-[°] trans-[°]	Ref
BrMe ₂ SnMn(CO) ₃ (PPh ₃) ₂	Ħ	P2,/m	4	2375.1(5) 1627.9(2) 1030.6(3)	98.03(2)	MnC ₃ P _a Sn	OC 172.4(32,146) P 231.8(9,47) Sn 265.9(6)	not given 156.8(18) j	315
{(CO) _a Mn[¶ ⁵ -C ₆ H ₄ (CH ₂ NMe ₂). (CHNCHMeČ(0)N-CHMeCOO)Cu]} ^k	B	P2,	4	$\begin{array}{c} 971.2(2)\\ 2228.6(4)\\ 950.17(7)\end{array}$	94-44(2)	MnC, MnC,	OC 178(2,4) (n ⁶)C 215(2,6) OC 180(2,1	90(1,1) 90(1.3)	316
(ŋ°-cp)(CO) ₂ (ŋ°-cp)[ŋ°-C ₆ H₄PPh ₃] .TiCi₂)Mn	. or	Pnma	4	2043.6(9) 1233.6(6) 1041.2(6)		MnC ₇ P	$(\eta_{\rm m}^{\rm m}) \subset 214(2,5)$ OC 174(1,0) $(\eta_{\rm m}^{\rm m}) \subset 215,0(8,10)$ P 226.6(4)	91.0(6)	317
(η [°] -cp) ₂ Nb(CO)(μ-CO)Mn(CO) ₄	e	P2,/c	Ŧ	829.2(3) 1623.2(5) 1161.5(4)	92.40(2)	MnC _s Nb	OC 182.7(5,35) Nb 317.6(1)	92.9(2,11.3) 164.5(2,9.2) m	318
(p ⁶ -cp)(CO) ₂ Mn(µ-H)Nb(CO). ^N .(ŋ ⁶ -cp)	B	P2,/n	Ŧ	908.8(2) 1423.9(4) 1280.1(3)	95.03(2)	MnC ₇ N	OC 173.1(9,2) (p ^a)C 213.3(12,37) H ^c 156(8)	c	319
(aِ": اَلْ -cp) (a)، الله: اللله: ا	t	PI	3	805.6(1) 932.2(3) 1192.7(2)	98.44(3) 82.97(3) 123.39(2)	MnC _s MO	OC 182.1(4,35) (1)C 200.5(4) Mo 296.05(8)	91.7(2,5.9) 177.2(2) 0	320
(n ⁶ -C ₆ H4PPh ₂)(CO) ₃ MoMn(CO) ₄	or	Pbca	œ	1178.2(2) 1721.5(3) 2312.9(6)		MnC ₄ PMo	OC 182.9(5,37) P 227.8(1) Mo 305.4(1)	85.8(2,12.4) P	321
(n°-cp)(CO) _s MoMn(CO) _s	E	P2,/c	4	1462(2) 888(1) 1162(2)	94(1)	MnC ₅ Mo	OC 174(2,4) Mo 308(1)		322
{ (ŋ ^a -cp)MoMn(μ-H)(μ-PPh _a KCO) _e]	8	P2/a	4	1592.2(2) 854.4(1) 1833.0(2)	113.79(1)	MnC4PHMo	OC not given P 229.4(2) H ^C not given Mo 308.8(1)		323

Table 15, cont. (2)

Compound	Crystal Class	Space Group	N	a{pm} b[pm] c[pm]	a[°] B[°] X [°]	Chromo- phore	Mn-L [pm]		(O)C-Mn-C(O) cis-[°] trans-[°]	Ref
[(η ^s -cp)MoMn{μ-6:η ³ -CH _z C(Me). .CHMe}(μ-PPh _z)(CO) ₄]	8	P2,/c	4	1033.7(1) 1574.3(1) 1528.2(1)	102.49(1)	MnC4PMo	OC 180.1 C 234.6 P 226.7 Mo 280.0	(4,37) (4) (1) (1) (1)		323
[(η ⁵ -cp)ΜοΜη{μ-6:η ⁴ -CHCHCH ₂ . . PPh _a (CO),]	E	P2,/n	4	1170.9(1) 1585.7(1) 1267.0(1)	100.45(1)	MnC ₆ Mo	OC 178.8 LC 217.2 Mo 268.0	((3,11) ((3,91) ((1)		323
[(η [°] -cp)ΜοΜn{μ-C(O)C ₆ H,,}. .(μ-ΡΡh₂)(CO)s]	B	P2,/c	4	911.8(3) 1463.2(4) 2068.7(3)	101.25(4)	MnC ₃ DPMo	OC 178.4 O 202.7 P 226.5 Mo 296.3	((12,40) ((6) ((3) ((2)		324
[(n ^o -cp)MoMn{µ-C(0)CH _a CH _a CH _a }. .(µ-PPh _a)(C0) ₆]	Ø	P2,/n	4	2866.9(6) 980.7(2) 958.8(2)	93.23(3)	MnCsP	OC 178(3 C 204.3 P 238.8	1,3) ((19) ((6)		324
(ກໍ ^ຣ -ep)(CO) ₃ WMn(CO))ລ	Ħ	P2,/n	Ŧ	970(5) 2485(4) 704(2)	115.2(1)					108
(CO) _a Mn(µ-C ₅ H₄COCH₂)₩(CO) _a . .(ŋ ⁸ -cp)	tr	- Id	8	686.6(2) 2086.0(6) 690.7(2)	97.20(3) 67.77(7) 97.35(3)	MnCa	ос 180.3 (ŋ [°])с 212.3	l(22,45) l(23,50)		325
(η ^{s-cp})(CO) _a MnW(μ-C=CHCOOMe). .(CO),	E	P2,/c	47	752.3(3) 1945.6(6) 1117.5(4)	96.04(3)	MnCaW	OC 178.9 (p ⁿ)C 214.3 C 190.3 W 299.3	(6,16) (6,28) (6,28) (5) 19(8)	88.5(3) q	326
-cis-(CO) _s MnRe(CO) ₄ {C(OMe)Me}	tr	- Id	63	899.9(5) 1309.3(2) 820.2(2)	111.24(2) 112.22(3) 84.41(3)	MnC ₅ Re	OC 183.4 Re 297.2	((8,38) ((1)	92.6(4,5.7) 168.6(3,3.1) r	327
(CO) _a Mn(n ⁵ -C _a H _a N)Re(n ⁵ -cp). .(CO) _a	8	P2,/b	4	634.9(2) 1365.3(5) 1712.8(3)	97.55(2)	MnC ₇ N	OC 185(3 C 218(2 N 216(2	(, 2) () ()	91(1,3) not given	328

Table 15, cont. (3)

Compound	Crystal Class	Space Group	N	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	Mn-L [pm]	(O)C-Mn-C(O) cis-[°] trans-[°]	Ref
(η ⁵ -cp)(CO) ₂ Mn{μ-C(CO)Ph}. .Re(CO)_	£	P2,/c	4	1115(1) 1464(1) 1657(2)	136.79(8)	MnC7Re	$(r^{\circ})_{C} = 184(4,3)$ $(r^{\circ})_{C} = 216(2,5)$ $C^{\circ} = 221(3)$ Re $= 281.7(3)$	86(1) s	329
MnRe(CO) _a {(CO)C _a H _a PPh _a }	8	P2,/c	-	1235.7(6) 1125.8(6) 2144.3(5)	111.40(3)	MnC ₅ O	OC 185(1,4) C 205(1) O 207(1)	92.3(6,4.7) 168.7(6) t	288
[ŋ^s-c p)(CO)FeMn(CO),](μ-CH ₂). ^{U1} .(μ-CO)	E	P2,/m	~	828.2(1) 1000.2(2) 860.4(1)	115.70	MnCaFe	OC 184.6(5,23) H _a C ^c 208.7(3) OC ^c 208.7(3) Fe 261.78(10)	92.5(1,5.1) 179.6(2) u,	340
(φ [*] -cp)(CO)PeMn(CO)_](μ-CH ₂). ^U ¹ .(μ-CO)	E	Cc	4	1540.2(2) 617.31(7) 1410.4(2)	107.36	MnC . Fe	OC 183.3(6,39) H _a C ^C 208.5(5) OC ^C 213.4(5) Fe 261.27(9)	92.2(3,8.0) 178.3(3) ¹¹ 2	330
(n ^s -cp)(CO) _a Mn(μ ^a -C=CHCOOMe). 	E	P2,/c	4	1303.5(2) 811.6(1) 1543.2(2)	97.17(1)	MnC _a Fe	OC 178(2,3) (p^{s})C 215(2,3) C 195(1) Fe 270.3(4)	90.8(9) v	331
[(µ-H)FeMn(CO)。 .(C ₆ H ₄ N-2-CH=N-t-Bu)]	or	P2,2,2,		864.3(6) 1414.3(5) 1512.0(5)		MnC ₃ N2HFe	OC 181.4(1,1) N ^c 205.6(1,5) H ^c 173(2) Fe 274.65(3)	89.55(7,2.68) x	332
	æ	P2,/c	4	1034.4(1) 798.55(3) 2179.6(2)	102.924(9)	MnC a Fe	OC 177(2,3) ($m{r}^n$)C 218(2,1) C ^c 203(2) Fe 276.0(4)	88.4(8) y	333
(nc-cp)(CO)2FeMn(CO)a ^k	в	P2,/b	8	722.0(6) 3038.7(8) 1249.8(2)	90.21(10)	MnC _a Fe	OC 181.0(25,62) Fe 284.0(4)	92.0(1.0,4.2) 172.4(1.0,1.2) z	334

Table 15, cont. (4)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] B[°] X[°]	Chromo- phore	[md]	(0)C-Mn-C(0) cis-[°] trans-[°]	Ref
						MnC ₅ Fe	OC 181.0(25,60) Fe 284.5(4)	91.9(1.0,4.6) 173.3(1.0,3) z_2	334
(η ^s -cp)(CO) _s Mn(μ _a -CS _z)Fe. .(CO) _s (PMe _s Ph) _z	8	P2, /c	47	1041.1(1) 976.2(2) 2819.4(5)	93.090(10)	MnC ₇ S	OC 176.5(7,15) (ŋ ⁵)C 214.4(8,33) S 226.0(2)	not given	335
(n ^{°-cp})Fe(n [°] -C ₅ H₄)CH₂(Me)NCH₂. .Mn(CO)₄	1 0	P2, 2, 2,	বা	1015.2(2) 2134.8(4) 810.4(1)		MnC _s N	OC 184(2,5) C 205(1) N 205(1)	90.6(6,12.3) 171.9(5) ² 3	336
(CO) _a Mn(ŋ ^s -C _s H ₄ -n')Fe(ŋ ^s -cp). .(CO) ₂	E	P2,/c	4	859.2(2) 1352.1(2) 1248.1(3)	94.92(2)	MnC _s	OC 179.0(8,3) (ŋ [*])C 215.5(7,61)	92.1(4,8)	337
$(CO)_{a}Mn(n_{a}^{s}-C_{a}H_{4}-n^{1})Fe(n_{a}^{e}-c_{D}).$ $(CO)(PPh_{a})$	E	P2,/C	4	1078.3(2) 1429.4(4) 1810.5(4)	92.77(2)	MnC _a	OC 174(2,4) (ŋ ⁵)C 217(2,8)	93.1(9,2.5)	337
(ŋ ^a -cp)Co(μ ₂ -NO) _a Mn(ŋ ^a -cp) ^k . (PMe _a)	ţ	- 2	4	974.11(7) 1300.04(8) 1367.68(14)	77.554(7) 77.960(7) 68.942(6)	MnC ₅ N ₂ PCo (MnC ₅ N ₂ PCo	P 226.7(1) N ^C not given N ^C 180.2(1,5) C 244.7(1) P 227.0(1) P 227.0(1) N ^C 181.0(2,2) Co 244.4(1)	с В В В	338
(CO) ₃ Co(µ ₅ -Ph ₂ C₄Me ₂)Mn(CO) ₃	E	P2,/c	4	1630.8(3) 887.5(2) 1557.4(4)	93.44(2)	MnC ₇ Co	OC 179.4(4,9) C 217.8(3,8) C ^C 209.9(3,1) Co 254.88(8)	not given	339
(φ ^{a_} -c _h Me _s)(C0)Mn(μ _a ⁻ C0) _a Rh(C0). .(φ ^{a_} -C _h Me _s)	or	Pnam	4	1685.1(12) 933.8(5) 1156.6(9)		MnC ₆ Rh	$(p^{5}) C C 178.4(12)$ $(p^{5}) C 215.1(9,11)$ O C C 186.6(7,0) Rh 270.3(2)	93.1(3) Za	340

Table 15, cont. (5)

Table 15, cont. (6)									
Compound	Crystal Class	Space Group	z	a[pm] b[pm] c[pm]	a[°] ß[°] X [°]	Chromo- phore	Mn-L [pm]	(O)C-Mn-C(O) cis-[°] trans-[°]	Ref
(a ⁵ -cp)(PPr ₃)Rh(μ-C=CH ₂). .(μ-CO)Mn(CO)(η ⁵ -cp)	E	P2, /c	4	1604.4(6) 843.3(3) 1677.0(7)	101.94(3)	MnCaRh	OC not given $(\boldsymbol{\eta}^{\mathtt{b}})$ C not given $OC^{\mathtt{c}}$ 190.1(3) Rh 266.7(1)	2,4	341
[(ŋ°-cp)Ir{µ-C(Ph)O}{µ-C(Me)O}. .{µ-PPh _a }Mn(CO) _a].0.5C ₆ H ₆	B	P2,/c	4	2108.9(4) 857.6(2) 1653.0(2)	102.50(1)	MnC _a O ₂ P	OC 180.4(11,33) C(Me)O 202.8(6) C(Ph)O 204.0(6) Ph _a P 234.8(3)	90.0(5,1.9) Ze	342
(PBu _a Me)(CH _a CH _a CH _a CO)Pt(µ-1). .Mn(CO)4	10	Pbca	8 0	1463.4(5) 1954.6(18) 1632.5(5)		MnC ₄ IPt	OC 182(1,4) 1 ^c 268.9(2) Pt 260.3(1)	94.6(4,6.7) 159.9(4) ^{Za}	343
[(PMe _a) (4-MeC _a H ₄ S)Pt(μ-CO) . {μ-C(PMe _a) C _a H ₄ Me-4}Mn(CO) (ŋ ^{a-c}	or	Pca2,	4	1948.2(4) 1282.7(4) 1164.9(2)		MnC"Pt	OC 176(1) (n^{b})C 215(1,3) OC 2185.9(9) C ^C 204.7(9) Pt 262.6(1)	86.1(4) ^Z 1.0	344
[(PMe_a)_aPt{µ-C(PMe_a)C_aH_Me-4}. .Mn(CO)_a(n_a^5-cp)](BF_a)	£	- 1d	63	1087.7(2) 1023.0(2) 1391.7(4)	92.80(2) 95.28(2) 90.08(2)	MnC _a Pt	$\begin{array}{c} \text{OC} \ 176.4(7,11) \\ \textbf{(p^{s})C} \ 215.7(7,22) \\ \text{C}^{2} \ 210.7(5) \\ \text{Pt} \ 264.5(1) \end{array}$	98.3(4) ^Z 11	344
[(PMe_1)_2Pt (μ-CC ₆ H₄Me-4)Mn(CO)_2. . (ŋ ⁶ -cp)] (BF₄) . CH ₂ Cl ₂	a	P2,/c	4	1043.4(4) 1933.4(7) 1490.1(7)	94.42(4)	MnCaPt	OC 181(1,1) (g ^a)C 215(1,2) C ^c 182.9(8) Pt 262.8(1)	88.2(5) Z12	345
(PMePh ₂) ₂ Pt(μ-CS)Mn(CO) ₂ (η ⁵ -cp)	E	P2,/c	4	1665.5(4) 968.4(3) 2140.9(5)	114.57(2)	MnCaPt	OC 178.4(10,14) (μ^{s})C 216.1(9,10) SC ^c 187.8(8) Pt 264.1(1)	91.8(4) Z ₁₃	346
[(PMe ₃) ₂ Pt{μ-(1-α,1-2- η - ⁻² 1+ -C=CHCH ₂ CH ₂ C)}Mn(CO) ₄]	E	P2,/n	4	935.7(5) 1284.4(10) 1598.9(9)	98.14(4)	MnC _e Pt	OC 182.8(6,40) C ^C 222.4(5,27) Pt 269.09(7)	92.5(2,6.7) 172.3(2) ² 1.4	347

Table 15, cont. (7)									
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] ß[°] X [°]	Chromo- phore	Mn-L [mg]	(O)C-Mn-C(O) cis-[°] trans-[°]	Ref
[(PMe)_2Pt{µ-0,1-2- ŋ- ^{2,15} -C=CH_2CH_2C)}Mn(CO)_4]	t.	- 14	5	942.9(5) 1211.3(4) 972.9(6)	93.97(14) 115.45(4) 98.83(3)	MnCaPt	OC 181.5(10,35) C ^C 228.4(16,9) Pt 265.9(2)	93.7(6,7.1) 161.3(5) ^{Z15}	347
(p ⁿ -cp) ₃ U(μ-OC=CHPMe ₂ Ph)Mn. ^k (CO) ₂ (p ⁿ -cp)	o	Pba2	œ	2242.3(5) 3532.8(7) 864.8(3)		MnCs MnCs	OC not given (\mathbf{r}^{2})C not given C 202(4) OC not given C 198(3)		348
a The mean value for chemically the maximum deviation from the The chemical identity of coord c The bridge atom (ligand). d (0)C-Mn-N = 94.1(1,1.8) and N-Mn-S = 84.51(8)°; 0-Mn-S = B y neutron diffraction, at 120 (0)C-Mn-Si = 81.1(2) and 113. (0)C-Mn-Si = 81.1(2) and 113. (0)C-Mn-Si = 81.1(2) and 113. (0)C-Mn-Si = 81.4(4,2.0) and i (0)C-Mn-Si = 84.4(4,2.0) and i (0)C-Mn-Si = 84.4(4,2.0) and i (0)C-Mn-Fi = 80.2(4) and 106. m (0)C-Mn-P = 80.2(4) and 106. m (0)C-Mn-P = 80.2(4) and 106. m (0)C-Mn-P = 80.2(4) and 107. i (0)C-Mn-P = 80.2(4) and 103. i (0)C-Mn-P = 91.9(2,5.4) and 113. (0)C-Mn-C = 90.2(2) and 113. (0)C-Mn-C = 90.2(2) and 113. (0)C-Mn-C = 88.6(5,7.4) and 114. i (0)C-Mn-C = 88.6(5,7.4) and 112.1 i (0)C-Mn-C = 92.70(13)°.	identical inated ato mated ato $178.3(8)^{\circ}$ $178.3(8)^{\circ}$ $178.2(1)^{\circ}$ $178.2(1)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $178.0(4)^{\circ}$ $177.0(5)^{\circ}$ 100° 100° 100° 100° 100° 100° 100° 100° 100° 100° 100° 100° 100°	angle or in or ligo in (0) C-h in (0) C-h in (0) C-h in (0) C-h in (0) C-h in (12) in (12) in (0) C-h in (12) in (0) C-h in (17) in (1	distribution of the second of	<pre>ance. The age.4(6,3 = 92.0(1,1,1) = 92.0(1,1,1,1) = 92.0(1,1,1,1) = 121.1(1,1,1) = 121.1(1,2,1) = 121.1(1,0,1) = 121.1(1,0,1) = 121.1(1,2,1) = 91.1(1,2,1) = 91.1(1,2,1)</pre>	first numbe (1,0) and 11' (2,0) and 11' (3(2)°; (0)C (9°; Sj-Mn-C (4(2)°. (1) and 178.1 (2) and 178.1 (1); C ⁰ -Mn-1 (07.8(2)°; (1) (1); C ⁰ -Mn-1 (6) and 174.1 (1); C ⁰ -Mn-1 (1); C ⁰ -Mn+1 (1); C ⁰ -Mn+1 (1); C ⁰ -Mn+1 (1); C ⁰ -Mn+1 (1); C ⁰ -Mn+	Fr in parent $2(1)^{\circ}; (-1)^{\circ}; $	<pre>hesis is the e.s.d. an wn-Br = 90.8(5)°. C-Mn-S = 94.3(1,6) an 3.1(1) and 115.2(1)°; -Ge = 91.7(8)°.)°.)°.)°.)°.</pre>	d the second is d 176.1(1)°; 5.0°; 16.70(9)°;	

Table 15, footnotes continued

- At 163K; (O)C-Mn-C^C = 88.4(2,6.3) and 174.8(2,3)°; (O)C-Mn-Fe = 89.7(2,3.5) and 129.8(2,1.5)°; C^C-Mn-Fe = 46.40(14,15)°; C^C-Mn-C^C = 91.8(2)°. C^C-Mn-C^C = 84.1(9) and 114.6(8)°; (O)C-Mn-Fe = 72.2(7) and 101.3(7)°; C^C-Mn-Fe = 45.8(5)°. (O)C-Mn-N^C = 96.87(7,7.24) and 169.82(7,6.91)°; (O)C-Mn-H^C = 85.2(7,10.1) and 173.6(6)°; (O)C-Mn-Fe = 92.57(5), 117.74(5) and 150.41(5)°; N-Mn-N = 81.81(6)°; N-Mn-H = 80.3(7,1.5)°; N-Mn-Fe = 46.40(4) and 85.76(4)°; H-Mn-Fe = 33.3(7)°. (O)C-Mn-C^C = 85.5(8) and 111.0(8)°; (O)C-Mn-Fe = 71.1(6) and 107.1(6)°; C^C-Mn-Fe = 46.4(4)°; H-Mn-Fe = 33.3(7)°. ľ,
 - ⊳
- ×

 - 2 2 2 2 2 2 2 2 2
 - (0)C-Mn-Fe = 87.0(7,8.6) and 169.2(8)°.
- (0)C-Mn-C = 97.3(5,7.6) and $152.1(4)^{\circ}$; (0)C-Mn-N = 100.0(4,11.7) and $145.4(4)^{\circ}$; $C-Mn-N = 40.5(3)^{\circ}$. $P-Mn-Co = 102.60(2)^{\circ}_{0}$; $P-Mn-Cp = 122.57(2)^{\circ}_{0}$; $CO-Mn-Cp = 134.83(4)^{\circ}_{0}$. $P-Mn-Co = 104.42(2)^{\circ}_{0}$; P-Mn-Cp = 121.89(2): $CO-Mn-Cp = 133.67(1)^{\circ}_{0}$. $(0)C-Mn-Rh = 99.8(4)^{\circ}_{0}$; $(O)C^{-}Mn-Rh = 53.0(2)$, $Rh-Mn-Cp = 139.3^{\circ}_{0}$.

 - 2 a
- - $(O)C-Mn-Rh = 55.6(1)^{\circ}; (CH_a)C-Mn-Rh = 50.1(1)^{\circ}.$
- (0)C-Mn-O = 92.3(4,2.2) and $176.9(4,1.1)^{\circ}$; (0)C-Mn-P = 95.3(3,1.1) and $171.1(3)^{\circ}$; $O-Mn-P = 82.3(2,7)^{\circ}$; $O-Mn-Ir = 55.3(2,0)^{\circ}$; $O-Mn-O = 84.9(2)^{\circ}$; $P-Mn-Ir = 40.02(6)^{\circ}$. 2.2.8
 - (0)C-Mn-I = 93.0(3,9.0) and 161.9(3)°; (0)C-Mn-Pt = 87.6(3,13.9) and 162.3(3)°; I-Mn-Pt = 60.4(1)°. ZB
- Z10
- (O)C-Mn-C = 100.6(5,2.9)°; (O)C-Mn-C(cp) = 84.2(4)-152.4(4)°; (O)C-Mn-Pt = 52.8(3) and 104.5(3)°; C-Mn-C(cp) = 97.1(5,3.6) and 128.1(5,7.9)°; Pt-Mn-C(cp) = 103.1(3)-164.1(5)°; C-Mn-Pt = 52.5(2)°; (O)C-Mn-C = 100.7(3,1.9)°; (O)C-Mn-C(cp) = 86.8(3)-151.4(3)°; (O)-C-Mn-Pt = 59.9(2) and 78.0(2)°; C-Mn-Ct = 50.2(2,12.6) and 144.0(3,4.0)°; Pt-Mn-C(cp) = 136.1(2,6.6) and 156.9(2,3.1)°; C-Mn-Pt = 50.3(1)°; C-Mn-Ct = 50.3(1)°; C-Mn-Ct = 50.2(2,12.6) and 144.0(3,4.0)°; Pt-Mn-C(cp) = 136.1(2,6.6) and 156.9(2,3.1)°; C-Mn-Pt = 50.3(1)°; C-Mn-Ct = 50.3((cp)C-Mn-C(cp) = 38.3(3,1.0) and $64.1(3,8)^{\circ}$. Z11
 - (0)C-Mn-C = 91.2(4) and 105.3(4)°; (O)C-Mn-Pt = 59.2(3) and 102.9(4)°; C-Mn-Pt = 48.4(3)°. Z1 2
- $(0)C-Mn-C(S) = 97.9(4,7.6)^{\circ}; (0)C-Mn-Pt = 56.2(3) and 97.1(3)^{\circ}; (0)C-Mn-C(cp) = 87.4(4)-151.2(4)^{\circ};$ $Pt-Mn-C(S) = 49.5(2)^{\circ}; (S)C-Mn-C(cp) = 90.2(3)-154.3(3)^{\circ}; Pt-Mn-C(cp) = 108..1(3)-168.9(2)^{\circ};$ 213
 - At 200K. (O)C-Mn-C = 168.3(2)°; (O)C-Mn-Pt = 64.9(2) and 101.4(2,7.4)°; C-Mn-Pt = 75.2(1)° (cp)C-Mn-C(cp) = 38.4(1,2) and $64.2(2,1)^{\circ}$.
- 21.4
 - z_{15} At 200K. (O)C-Mn-C = 170.5(5)°; (O)C-Mn-Pt = 72.2(4) and 96.8(4,6.0)°; C-Mn-Pt = 76.1(3)°.

Two ligand atoms are used to bridge in a third set of compounds, giving the following examples; two carbon donors [330,339-341,344-346]; a hydrogen and a nitrogen [332]; two nitrogens of NO ligands [338]. The mean bridge angle ranges from 78° to 110°, while the Mn-M distance ranges from 244.4 to 270.3 pm.

Figure 20 illustrates another type of bridging [324] in which the acyl ligand spans the Mn-Mo vector, bonding through carbon to Mo and oxygen to Mn. In addition there is another bridge via the phosphorus atom of PPh₂. The Mn-Mo distance of 296.3(2) pm is typical for a single bond. The same type of bridge has been found in a similar derivative [324] with a 399 pm Mn-Mo distance. Similar bridges are found in other examples: Mn and Al bridged by C(O)CH₃, C to Mn and O to Al, plus a bromine bridge; Mn-N-N-Ga via dmpz, and Mn-O-Ga via tpe [309]. Each of the remaining structures in Table 15 represents a unique structure from a bridge point of view. In a red Fe/Mn derivative [335] a FeCS₂Mn moiety is almost planar, with CS₂ bridge \mathcal{Q}^2 -coordinated to Fe through the C=S bond and σ -bonded to the Mn through the second sulphur atom, as can be seen in Figure 21. A tricyclic arrangement is found in a Mn/Ir complex [342], with three bridges between the two metal atoms and no direct M-M bond (354.3(2)pm).

An overall review of the data confirms a tendency for the Mn-M distance to increase as the bridge angles increase. Also, the mean Mn-L(terminal) distance is shorter than the Mn-L(bridge) distance, which is affected by both steric and electronic factors. Thus the mean Mn-L(bridge) distances elongate in the order:

Figure 20. Molecular Structure of $(n_{\mu}^{5}-cp)MoMn\{\mu-C(0)C_{e}H_{11}\}(\mu-PPh_{2})(CO)_{s}$ Reproduced with permission from J. Chem. Soc., Chem. Commun. [324]

Figure 21. Structure of $(p_2^5-cp)(CO)_2Mn(\mu_3-CS_2)Fe(CO)_2(PMe_2Ph)_2$ Reproduced with permission from Inorg. Chem. [335]

173pm(H) <186.9pm(NL) <195.6pm(CO) <203.7pm(OL) <205.4pm(Cl)<258.0pm(Br) <268.98pm(I).

The Mn-M average distances are observed to increase in the order: 248.0pm(Mn-CO) <252.4pm(Mn-Ge) <264.2pm(Pt) <266.6pm(Sn) <271.4pm(Fe) <278.1pm(Rh) <289.5pm(Re) <294.6pm(Mo) <299.4pm(W) <325.3pm(Nb).

A red monoclinic isomer and a yellow triclinic isomer are found for a Mn/Pt complex [347]. Two crystallographically independent molecules are found in four examples [316,334,338,348]. In both cases the major difference is one of degree of distortion, thus representing distortion isomerism.

The mean Mn-C(CO) distance is 179.6pm (range 157.8 to 187.0pm), and the mean Mn-C(cp) distance is 214.2pm (207.3-221.6pm). Both are somewhat longer than that observed for the homobinuclear derivatives. By contrast, the mean Mn-C(CO, bridge) distance is longer in the latter than in the former.

(E) Hetero-oligonuclear organometallic compounds

The data for these compounds is listed in Table 16 in order of increasing number of metal atoms. There are several polymetallic derivatives in this series [306,311,350-358] but few have a direct Mn-Mn or Mn-M bond.

A black, sulphur bridged MnCr complex consists of a mononuclear Mn(cp) (CO)₂ unit and a binuclear [Cr(cp)SCMe₃]₂S unit, triply bridged by three sulphur atoms such that the manganese is a "piano-stool" configuration. The structure is illustrated in Figure 22.

Some of the hetero-trinuclear derivatives contain two manganese atoms and one other metal [326,359-365). A few molecules have a bent Mn-M-Mn, M = Si [359], M = Ti [362]. In four examples the bent Mn-M-Mn framework is bridged by another group, for example: carbonyl between outer Mn atoms [361]; the C of CH₂Se, where Se is the M atom [364]; hydrogen between a central Mn and outer Ta [363]; carbon donors between each pair of metal atoms [326]. In another example [365], two manganese and one molybdenum are linked by an arsenic atom in a trigonal planar array. In only three examples is there evidence of a Mn-Mn bond, these being at 285.4(2)pm [361], 293.8(1)pm [363] and 307.0(1)pm [365]. The mean Mn-M distances are: 237.1(2,111)pm (M = Ge [360,361]; 243.0(2,59)pm(Se) [364]; 301.7(1,53)pm(Mo) [326,365].

The mean Mn-C(CO) distance of 178.6 pm in the hetero-trinuclears is longer than that of the homo-trinuclear compounds (Table 14). However, the mean Mn-C(cp) distance of 214.9 pm is about 0.2 pm shorter.

There are five examples of hetero-tetranuclear compounds with Mn_2M_2 units: Mn_2Hg_2 [366]; Mn_2Cr_2 [367]; Mn_2Re_2 [368,369]; Mn_2Yb_2 [370]. Only in $\{(n^5-cp)Cr(SCMe_3)\}_2SMn_2(CO)_8$ [367] is a Mn-Mn distance smaller than 300 pm

Figure 22. Structure of {(η⁵-cp)Cr(SCMe₃)}₂(μ₃-S)Mn(CO)₂(η⁸-cp) Reproduced with permission from J. Organomet. Chem. [351]

Table 16 Crystallographic and st	tructura	l data for	het	ero-oligonuch	ear organome	tallic compc	unds ^e		
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	α[°] β[°] X [°]	Chromo- phore	[md] T-W	(0)C-Mn-C(0) [°]	Ref
[(CO) ₃ Mn(CHOAlMe ₂ N-t-BuPPh ₂). .(PPh ₂ N-t-BuAlMe ₂)]	1 0	Pbca	œ	1806.3(7) 1844.6(8) 2500.3(7)		MnC _s HP	OC ^b 179.9(15,26) C 217.5(12) C 245(2) H 191(12) P 237.6(3)	87.0(6,2.4) d	349
(n*-cp*)(CO) ₂ Mn(SiCl ₃) ₂	E	P2,/c	4	1203.2(6) 1134.4(5) 1182.2(7)	93.63(4)	MnC ₇ Si ₂	OC 180.7(7,1) (n ^a)C 211.3-216.5(6) Si 232.3(2,3)	111.9(3) e	311
[{(n ^a -cp) _a (CO)Nb} _a (μ-H)]. .[Mn(CO) _a]	or	P2, 2, 2, 2,	*	1358.3(3) 1556.5(3) 1262.2(2)		MnCs	OC not given		350
[{(CO) _s Cr} _a (μ _a -As)Mn(CO) _s] ^f	t	- 14	3	944(1) 972(1) 1334(2)	101.3(1)96.9(1)70.1(1)	MnCsAs	OC not given As 251.1(4)		306
[{(n ^a -cp)Cr(SCMe _a)} ₂ (μ _a -S), ^g .Mn(CO) ₂ (n ^a -cp)	a	P2,/a	-	1041.4(7) 1351.3(3) 1630.2(9)		MnC ₇ S	OC 176.0(7,6) (n ⁵)C 216.3(7) S ^C 233.4(2)	ъ	351
[{{n ³ -cp)(C0)C0} ₃ (µ ₃ -PCH ₂ C ₆ H ₆). .Mn(C0) ₂ (n ³ -cp)]	е 4.	P2, /c	4	957.9 1433.8 1765.0	99.08	MnC ₇ P	OC 174(2,2) (n ⁵)C 216(2,5) P ^C 224.6(3)	90.5(6) h	352
(n ^a -cp [*])MnCo _a (n ^a -C _s Me _s) ₂ (μ-CO). .(μ _a -CO)	S	P2,/n	4	1090.3(4) 1460.5(5) 1724.1(4)	94.42(3)	MnC ₆ Co ₃	(n ⁵)C ^c - OC ^c Co 256.1		353
{{(CO) ₃ Co} ₃ (μ ₂ -C≡CPh)Mn(CO)₄. .(PCy ₃)]	E	P2,/c	4	1354.5(5) 1869.1(7) 1694.4(9)	110.89(3)	MnC ₅ P	OC not given C ^c 206.3(7) P 236.2(3)	not given	354
(n ^e -cp) _s Co _s (μ _a -CMe)(μ _a -CO) _s . .Mn(CO) _a	ţ	Id	4	868.01(13) 1356.54(13) 1503.36(16)	84.327(8) 89.258(10) 77.794(10)	MnC ₆ Co ₂	OC 181.5(3,11) OC ² 211.6(3,10) MeC ² 192.2(3) Co 250.7(1,8)	93.8(14,2.23) i	355

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] ß[°] ¥[°]	Chromo- phore	М-L М-Ш	(0)C-Mn-C(0) [°]	Ref
(СО) _я Fe ₂ (µ ₂ -СО) ₂ (µ ₃ -PPh)Mn. .(q^{°-} ср)	E	C2/c	œ	1579(2) 1592(2) 1790(3)	97.2(1)	MnC ₇ PFe ₂	(n ⁵)C 216(2) OC ^C 176(2,0) P ^C 222.1(6) Fe 274.7(4,5)	87(1) j	356
(PPh _a)(CO) ₆ Fe _a (μ _a -PPh)Mn(CO) _a . .(η ⁶ -cp)	E	P2,/c	\$	1262(2) 1586(2) 1732(2)	92.99(1)	MnC ₇ PFe	OC 180(1,2) (n ⁵) ^C not given P ^C 222.3(3) Fe 290.8(4)	87.9(3)	357
{(FBu _a)(CO) _a Fe} _a (μ _a -PPh)Mn. ¹ .(CO) _a (η°-cp)'	E	P2,	4	1683(1) 1260(2) 2214(2)	91.40(6)	MnC ₇ P MnC ₇ P	OC 182(4,3) (η^{n}) ξ not given P^{2} 229(1) OC 175(3,4) (η^{n}) ξ not given (η^{n}) f^{2} 232(1)	not given	358
[(η ^s -C _s Me _s)Mn(CO) ₂ H] ₂ (μ-SiH ₂)	Чı	F2dd	00	919.9(3) 1391.3(3) 4085.7(9)	06 06 06	MnC ₇ HSi	OC 172(2,0) (η_{5}^{5})C 213(1,3) H not given Si ⁶ 243.4(3)	89.9(10) m	359
[(η ^e -cp [*])Mn(CO) ₂] ₂ (μ-Ge)						MnC,Ge	OC 178.3(6,5) ($n_{\rm b}^{\rm s}$)C 214.0(-,28) Ge ^c 220.4(1)	93.0(3) n	360
Mna(CO)aGe(CH ₃)a	B	C2/c	œ	874.2(2) 1421.5(4) 2722.1(7)	95.05(5)	MnC ₅ GeMn ¹	OC 182.3(9,44) OC ^C 209.6(8,59) Ge ^C 245.5(2,23) Mn ¹ 285.4(2)	90.7(4,6.3) 177.2(4,1) o	361
Ti(n ⁵ -cp) ₂ [0-(n ⁴ -C ₅ H ₄)Mn(CO) ₃];	E	C2/c	Ŧ	1347.4(2) 808.5(1) 2232.7(3)	105.08(1)	MnC ₇	OC 178.8(3,20) (n ^b)C 213.9(2,2)	91.5(2,1.8)	362
(n ² -cp) _a (CO)Ta(μ-H)Mn _a (CO) _a	E	P2,/a	4	$\begin{array}{c} 1487.2(3)\\ 1075.6(2)\\ 1559.1(2)\end{array}$	114.04(1)	MnCsMn	OC not given Mn 293.8(1)	9 4.6 p	363

Table 16, cont. (2)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] ß[°] X [°]	Chromo- phore	[md]	(0)C-Mn-C(0) [ⁿ]	Ref
						MnC ₄ HMn	OC not given H 177(5) Mn 293.8(1)		E96
[(η ⁶ -cp)(C0)Mn] _z (μ ₃ -SeCH _z)	E	p2,/n	4	1561.6(6) 1315.2(5) 1599.9(4)	103.95(3)	MnC ₇ Se MnC ₆ Se	OC not given (η^{n})C not given Se 237.1(2) OC not given (η^{n})C not given C ² 210.4(12) Se 248.8(2)	ਰਾ	364
[(n ⁶ -cp)(CO) _a Mn(μ ₂ -C=CH. .COOMe)] ₂ Mo(CO) ₂	E	C2/c	4	1943.6(5) 803.8(2) 1581.7(4)	98.61(2)	MnCaMo	$\begin{array}{c} \text{OC} \ 178.9(3,16) \\ (\mathfrak{p}^{n}) \text{C}^{\text{C}} \ 215.1(3,35) \\ \text{C}^{\text{C}} \ 190.9(2) \\ \text{Mo} \ 296.38(3) \end{array}$	86.4(1) r	316
[(ŋ-cp)] ₃ (μ ₃ -As)Mo. ^S .(CO) ₃ (ŋ-cp)"	느	' II	8	809.5(5) 913.6(5) 1735.0(8)	91.52(4) 100.58(4) 69.56(4)	MnC7AS MnC7AsMo	OC not given (η [*])C not given As 223.5(1) OC 178.9(10,19) (η [*])C 215.0(9,19) As 231.9(1) Mo 307.0(1)	22	365
[(#°-cp)Mn(CO) ₂ PPh ₃ Hg. ^t .(OcoCF ₃) ₂] ₂ '	tr	- Id	5	947.2(5) 936.9(7) 1681.3(9)	92.06(5) 103.01(4) 91.59(5)	MnC 7 PHg	OC 183(2,0) ($\mathbf{\eta}^{5}$)C 217(2,2) P 230.6(4) Hg 260.2(2)	109.3(6) t	366
(ر10)مr((SCMe,))2.4.4.4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	E	P2, /n	80	3282.3(4) 1218.4(20) 1745.3(4)	97.55	MnC ₅ Mn MnC ₄ SMn	OC 176(4) Mn 295.3(8) OC 182(5) S ^C 244.8(9)	not given	367

.....

224

Table 16, cont. (3)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	a[°] ß[°] X[°]	Chromo- phore	M-L [pm]	(0)C-Mn-C(0) [°]	Ref
[(n ^s -cp)Mn(CO) ₃ (PMe ₂ S)Re. .(CO) ₄] ₃	E	P2,/c	5	1131.5 1171.5 1337.2	91.62	MnC ₇ P	0C	•	368
[{(n5-cp)Mn(CO) ₂ } ₂ {PFe. .(CO) ₃ } ₂]		supplem	entai	ry data		MnC ₇			369
{[(n [*] -C ₅ Me ₅)Yb(µ-OC) ₂ Mn. .(C0) ₃] ₂ },	e	C2/m	16	1894.2(5) 3259.2(5) 1902.9(5)	109.92(2)	MnCs	OC 182.4(8,19) OC ^C 176.6(7,31)	89.6(3,2.6) 120.0(3,5.8) 175.3(3,4)	370
[Mn(CO),(COCH ₃),2] ₃ Al	E	P2,/n	4	1394.8(5) 1218.2(6) 1954.5(6)	90.51(2)	MnC _e	OC 183.9(11,21) C 181.8(10)	89.4(6,3.6) 165.4(6)	371
[(n_s-cp*)Mn(CO)_a]_Ge	£	P2,/n	4	901.5(5) 3060.4(3) 919.9(12)	107.37(3)	MnC,Ge MnC,GeMn (2x)	OC 178.0(-,14) (η^{b})C 214.1(-,36) Ge 226.0(2) OC 178.0(-,14) OC 178.0(-,14) Ge 237.0(2,11) Mn 298.2(2)	91.0(4) v, 87.9(5,1) v ₂	360
[(n°-cp)Mn(CO) ام°-SbCl) [(μ-SbCl)	E	P2,/c	4	1505.2 1243.3 1210.5	109.1	MnC ₇ Sb MnC ₇ SbMn (2x)	OC not given (n ^b)C 212.7(15) Sb 246.3(3) OC not given (n ^b)C 213.8(15) Sb 255.4(2,19) Mn 304.3(3)	×	372
[(η ⁵ -cp)Mn(CO) ₂] _n (μ ₃ -Te)	e	P2,/c	4			MnC,Te	OC supplementary (n ^b)C TC	data	373

Table 16, cont. (4)

Compound	Crystal Class	Space Group	2	a[pm] b[pm] c{pm]	α[°] β[°] \$[°]	Chromo- phore	M-L [pm]	(0)C-Mn-C(0) [°]	Ref
[(η ⁵ -cp)Mn(CO) ₂] ₃ (μ ₂ -SbCl ₂) ₂	tr	- 1d	H	710.6 756.98 1395.9	96.7 99.3 110	MnC ₇ Sb ₂ MnC ₇ Sb	OC 178(4,2) (p ^b)C 214.0(30) Sb 262.0(4,21) OC 176(3,2)	112.1(14) Y 92.5(14,2)	372
						(2x)	(n ^b)C 212.0(4) Sb 242.3(4,11)		
[(φ [*] -cp)MnOs _s (μ ₂ -CH=CHPh(μ-H). . (μ-CO)(CO),]	E	P2, /c	4	899.8(1) 1249.1(4) 3208.8(8)	96.55(2)	MnC _a Os	$\begin{array}{c} 0C & 170(3) \\ 0C^{c} & 189(3) \\ 0C^{c} & 217(4,5) \\ C^{c} & 218(3,10) \\ 0s & 276.5(4) \end{array}$	5	374
[(η°-cp*)₂Cr₂(μ-SCMe₃). .(μ ₃ -S)₂Mn ¹¹	E	Cc	4	2554.0(10) 920.8(3) 2159.5(9)	135.30(2)	MnS_Cr_	S ^C 240.8(6,94) Cr 298.2(4,143)	22	375
[(¶°-cp)2Cr2(µ-SCMea). .(µa-S)2]Mn ¹¹	0 r	Fdd2	80	3971.5(13) 2112.7(7) 780.8(3)		MnS ₄ Cr ₄	S ^C 239.1(5,2) Cr 294.2(3,6)	Z.	376
[{(n ⁶ -cp)(CO) ₂ Mn} ₂ BiCl] ₂ ^k	E	P2,/c	4	1157.3 1330.3 1152.8	116.7	MnC ₇ Bi	OC 178.3(30) (p ^s)C 215.1(60) Bi ^c 246.9(6,2)	2.4	377
ا(بو °-cp*)Mn(CO) ₂ Hg]_	tg	14	3	1595.9(2) 1595.9(2) 768.3(1)		MnC ₇ Hg ₂	OC 178(8,2) $(\eta^*)C_{212(7,6)}$ Hg ^c 264.0(7)	87(3) ² a	378
Ge{(n ⁵ -cp [*])Mn(CO) ₂ [Fe(CO) ₄] ₃ }	æ	Pc	4	970.4(2) 1193.2(3) 2090.1(4)	99.32(2)	MnC , GeFe	OC not given (ŋ °)C not given Ge ² 243.1(1) Fe 286.5(1)	2 ₆	379
$(n_{r}^{s}$ -C ₅ Me ₅)MnFe ₂ Te(CO) _A ²⁷	E	P2, /n	4	982.4(2) 1483.6(3) 1535.5(5)	97.22(2)	MnC ₇ Fe ₂ Te	 OC 181.5(5,2) (P^b)C 217.3(5,35) Fe 274.0(2,4) Te 251.8(1) 	27	380

Table 16, cont. (5)

Table 16, Footnotes

found. In these brownish-black prisms, binuclear fragments with Mn and Cr are linked through a η^{4} -sulphide bridge (Mn-S = 244.8(9)pm, Cr-S-Mn angle = 125.4(5))°. The shortest Mn-M distance is found for Mn-Hg at 260.2(2)pm [366].

 Mn_3M units are present in three examples, M = AI [371], M = Ge [360], M = Sb [372] and M = Te [373]. In the pale yellow hexagonal needles of the aluminum derivative [371] the central atom is in fact the aluminum, and the manganese atoms are part of the ligand system around this atom. In the dark red germanium derivative, there is a Ge=Mn(CO)₂cp moiety (Mn-Ge = 226.0(2)pm) and a cp(CO)₂-Mn-Mn(CO)₂cp unit (Mn-Mn = 298.2(2)pm), which is attached to the germanium through two Mn-Ge bonds (235.9(2) and 238.0(1)pm) forming a Mn₂Ge ring. A similar pattern is found in the green Mn₃Sb compound [372] which has a Mn-Mn distance of 304.3(3)pm and two Mn-Sb bonds of 254.0(2) and 257.7(2)pm forming a Mn₂Sb ring.

In another derivative, three $Mn(CO)_2$ cp moieties are held together by a Te atom (mean Mn-Te = 248.5pm) [373].

The only hetero-tetrametallic compound [374] has a metal framework which consists of an osmium triangle with a manganese linked to one corner (Mn-Os = 276.5(4) pm.

The molecular structure of a dark green hetero-pentametallic compound is shown in Figure 23 [375]. The molecule contains a metallospirane core, Cr_4Mn which is strongly distorted in comparison to its cyclopentadienyl analogue [376].

Figure 23. Structure of $[(n_{p}^{5}-cp^{*})_{2}Cr_{2}(\mu-SCMe_{3}(\mu_{3}-S)_{2}]_{2}Mn$ Reproduced with permission from J. Organomet. Chem. [375]

Table 17 Sun	mmary of the	manganese-atom (ligund) and	rhenium-atom (ligand) distances o	st carbonyl compounds ^a
Coord. Atom (ligand)	Central Atom	Mononuclear [pm]	Binuclear [pm]	Trinuclear [pm]
H	Mn	146 - 160 (152)	163 - 186 (172) ^b	1.61 - 179 (172) ^b
	Re		170 - 210 (186) ^b	170 - 191 (181) ^b
LH	Мп	164 - 183 (174)		
Ť	Mn			193 - 197 (195) ^b
	Re	197.0 - 203.9 (200.5)		
ΓO	Mn	203.1 - 204.2 (203.7)	235.0 - 235.2 (235.1) ^b	194.0 - 210.0 (202.3) ^b
	Re	218.8 - 223.0 (220.6)	212.9 - 222.0 (214.9) 207.0 - 217.7 (212.5) ^b	217 - 218 (217.5) _b 212 - 218 (214.5) ^b
LN	Mn	173.0 - 211.0 (201.6)	202.3 - 211.5 (205.6) 197.2 - 211.0 (204.4)	187.9 - 206.1 (196.8)
	Re	176.0 - 235.0 (220.4)	203.0 - 218.0 (210.5) 208.0 - 240.7 (223.2)	209 - 222 (215)
00	Mn	170.1 - 200.0 (180.5)	166.0 - 189.6 (181.0) 193.0 - 217.3 (200.0)	153.0 - 206.1 (180.1)
	Re	181.0 - 211.0 (192.8)	151.9 - 223.0 (191.1)b 192.0 - 214.0 (204.8)b	165 - 220 (192) 211.0 - 213.5 (212.6) ^b
LC	Mn	186.2 - 204.7 (196.7)	193.2 - 226.4 (212.5) 205.3 - 210.2 (207.0)	216.1 - 221.7 (218.5)
	Re	193.0 - 212.6 (206.8)	202.7 - 212.7 (205.7)	

Table 17, cont				
Coord. Atom (ligand)	Cent ral Atom	Mononuclear [pm]	Binuclear [pm]	Trinuclear [pm]
S	Mn		241.4 - 244.1 (242.7)	
	Re			252 - 254 (253) ^b
LS	Мn	235.1 - 241.0 (238.3)	222.4 - 240.5 (232.9) ^b	
	Re	243.3 - 253.2 (249.7)	254.1 - 258.6 (255.4) ^b	238.0 - 250.2 (249.8) ^b
ЧП	пM	222.2 - 239.8 (227.4)	216.9 - 257.3 (228.3) 225.3 - 236.9 (229.4)	216.1 - 229.0 (228.4)
	Re	241.0 - 253.0 (243.5)	246.0 - 248.5 (246.8)	234.7 - 242.0 (238.0)
CI	Mn	235.8 - 241.5 (237.6)	237.1 239.4 - 239.9 (239.6) ^b	
	Re	251.5	240.7 - 242.1 (241.6) 244.8 - 253.4 (250.0)b	249.3 - 250.2 (249.8) ^b
Br	Mn	250.0 - 255.7 (253.0)	247.7 - 253.4 (251.0) ^b	
	Re	255.1 - 263.6 (261.1)	257.8 - 267.9 (263.6) ^b	
LAs	Mn	243.2	238.6 - 246.0 (240.8) 246.2 - 250.2 (248.2)	
	Re		256.9 - 258.4 (257.5)	
Ι	Mn			268.9 - 289.2 (279.1) ^b
	Re	277.9	281.3 - 282.7 (282.0) ^b	283.9 b 271.4 - 284.1 (278.6)
a The mean b Bridging a	value is in pa tom.	rrenthesis.		

Table 18	Summary of the	: manganese-atom (ligand) and	rhenium-atom (ligand) distances o	f organometallics ^a
Coord. Atc (ligand)	om Central Atom	Mononuclear [pm]	Binuclear [pm]	Trinuclear [pm]
NO	Mri	164.7 - 164.7 (166.0)	165.1 - 167.4(165.8) 1.752 - 1.944 (1.854) ^b	$184.0 - 186.0 (185.5)^{\rm b}$ $187.3 - 193.8 (190.1)^{\rm c}$
	Re	169.6 - 180.0 (176.1)		
LN	Mn	169.3 - 206.3 (185.0)	199.2 - 233.4 (218.7) 178.2 - 216.0 (192.7)	187.2 ^c
	Re	224.7 - 241.5 (234.3)		
00	Mn	147.0 - 223.1 (180.0)	170.0 - 185.9 (178.5) 181.0 - 234.0 (206.7) ^b	161.0 - 187.0 (175.8)
	Re	172.0 - 203.1 (192.7)	$180 - 208 (194) \\ 208.4 - 222.8 (211.9)^{b}$	190.0 - 201.2 (195.5)
ГC	Wn	168.0 - 230.0 (206.0)	202.6 - 217.7 (212.7)	
	Re	174.2 - 236.0 (216.2)	192.6 - 235.3 (215.9)	205.4 - 244.0 (216.0) 193.0 - 244.7 (225.5) ^b
LC-n ⁵	Mn	209.7 - 261.4 (230.9)	192.9 - 227.6 (213.7)	213.7 - 217.6 (215.1)
	Re	216.0 - 241.0 (228.1)	224 - 240 (231.5)	222.4 - 236.7 (229.0)
CI	Mn	235.4	241.1 - 270.1 (251.8)	
	Re		236.0 - 257.8 (247.3)	228.6 - 242.7 (233.1) 238.4 - 245.4 (241.0) ^b
LP	стМ	217.4 - 245.1 (230.0)	228.7 - 268.4 (249.4) 217.8 - 221.6 (219.0) ^b	
	Re	233.7 - 248.1 (240.8)		241.9 - 261.7 (253.8)
I	Mn	264.5		272.2
	Re	269.1 - 277.3 (275.5)	281.3 - 282.7 (282.0) ^b	
a The me	an value is in p	arenthesis; b Doubly bridgi	ing atom; c Triply bridging atom	

» • ·

M-M (Oxid. Number)	Bond Distance [pm]	Mean Value [pm]
Re(6) - Re(6)		255.9
Re(5) - Re(5)	255.7, 265.1	260.4
Re(4.33) - Re(4.33)		241.5
Mn(4) - Mn(4)	282.0 - 294.3	288.2
Tc(4) - Tc(4)	233.1 - 236.3	234.7
Re(4) - Re(4)	236.2 - 286.5	267.5
Re(3.84) - Re(3.84)	279.3 - 292.2	285.5
Re(3.5) - Re(3.5)		
Mn(3) - Mn(3)	272.0 - 286.9	277.3
Tc(3) - Tc(3)	213.3 - 219.2	215.5
Re(3) - Re(3)	216.9 - 296.0	257.3
Tc(2.66) - Tc(2.66)	241 - 260	250
Tc(2.5) - Tc(2.5)	209.5 ~ 212.6	211.3
Re(2.5) - Re(2.5)	222.9 - 268.3	239.2
Mn(2) - Mn(2)	251.6 - 284.1	275.0
Re(2) - Re(2)	221.1 - 258.6	230.1
Tc(1.83) - Tc(1.83)	216 - 270	
Mn(1) - Mn(1)	250.3 - 298.2	276.6
Tc(1) - Tc(1)	253.1 - 272.1	264.4
Re(1) - Re(1)	281.6 - 295.0	288.6
Mn(0) - Mn(0)	217.0 - 297.7	271.4
Re(0) - Re(0)	241.1 - 295.7	281.5
Mn(4) - Mn(3)	271.6 - 276.3	274.0
Mn(2) - Mn(0)	252.0, 252.6	252.3
Re(5) - Re(4)		250.8
Re(5) - Re(1)		238.1
Re(4) - Re(2)	223.1 - 261.3	242.2
Re(3) - Re(2)	229.0 - 242.1	237.1
a Only distances smaller	than 300 PM are tabulated	i. Data for Tc-Tc

Table 19 Summary of the metal-metal bond distances^a

232

and Re-Re bond distances are taken from references [381, 382].

A black Mn/Hg derivative [378] has an eight-membered Mn₄Hg₄ ring. The four Hg atoms are almost coplanar (deviation 0.4pm), while the four Mn atoms are 35.9 pm out of plane from each other. The non-linearity of the Mn-Hg-Mn groups (157.2°) indicates metal-metal interaction (Mn-Hg = 264.0pm).

Finally, there are two examples [379,380] in which three different metal atoms are present (Table 16).

4. SUMMARY

The manganese carbonyl compounds are found with coordination numbers from four to six, the latter being the most common. Several derivatives exist as isomers (13,14,26,35,103), and independent molecules exhibiting distortion isomers have also been noted (7,10,38,50).

The most common structures are mono-, bi- and polynuclear, with a few examples of tri-, tetra- and hexanuclearity.

A summary of the M-L bond distances for the mono-, bi- and trinuclear carbonyls is given in Table 17. The data for the rhenium compounds are from an earlier review (4). The following general observations can be made:

- (a) The Mn-L bond distances are shorter than those for Re-L.
- (b) The M-L bond distances elongate with the van der Waals radius of the coordinating atom.

The nearly 300 manganese organometallic compounds reviewed here are mostly mono- and bimetallic with a few examples up to pentametallic.

Distortion isomerism has been found in 14 examples:

(161, 199, 200, 229, 231, 232, 237, 291, 316, 334, 338, 348, 358, 367)

The cyclopentadienyl ring is by far the most common ligand, and a tetragonal arrangement about the metal is the preferred molecular geometry. Binuclear manganese compounds with two linking ligands are the most common bridging structure encountered.

A summary of the structural data for organometallic manganese and rhenium [4] compounds is given in Table 18, from which the following general observations can be made:

- (a) The mean Mn-L bond distance is somewhat shorter than that for rhenium.
- (b) The mean Mn-L (bridge) bond distance is longer than the mean M-L (terminal) value, except in the case of Mn-P.
- (c) The M-L bond distances increase with increasing van der Waals radius of the ligated atom.

A summary of metal-metal bond distances is given in Table 19, and includes data for the compounds in this review, manganese coordination compounds (383), rhenium compounds (4,382) and technetium compounds (381). The following general observations can be made:

- (a) Metal-metal bonding chemistry for manganese shows less variety than that of rhenium.
- (b) Non-integer oxidation states are not involved for manganese contrary to the case for technetium or rhenium.
- At higher oxidation states (+2 to +4) manganese bonds are longer than (c) those of rhenium, while at lower oxidation states (0,+1) the reverse is true.
- (d) Technetium metal-metal bonds tend to be shorter than those of either manganese or rhenium.

There is also a rich variety of heterometallic compounds with a direct Mn-M bond. The mean values of these bonds increases in the order shown below: (Mn-Ge) 242.7pm <(-Ga) 245.0pm <(-Bi) 246.9pm <(-Co) 250.2pm <(-Hg) 254.2pm <(-In) 264.0pm <(-Li) 264.5pm <(-Sn) 266.6pm <(-Pt) 270.0pm <(-Cd) 271.4pm <(-Fe) 274.4pm <(-Rh) 275.5pm 281.1pm <(-Mo) 287.3pm <(-Re) 292.7pm <(-Cr) 296.2pm <(-Pd) <(-W) 299.4pm

Despite the variety of the compounds discussed above, many systematic trends are observable, and this review attempts to document and clarify these. It is anticipated that these observations may suggest directions that might be fruitful for further investigation.

5. ACKNOWLEDGEMENTS

The authors thank those who gave permission for reproduction of original figures, and also the Chemistry Faculties of the Slovak Technical University and York University for their financial and other support.

6. REFERENCES

- 1. S. Miller & L.E. Orgel, The Origin of Life, London, Chapman & Hall (1973); An Introduction to Bio-inorganic Chemistry, ed. D.R. Williams, C.C. Thomas, Springfield, Illinois, U.S.A. (1976).
- A. Wojcicki, J. Organomet. Chem., 45 (1972) 335; P.M. Treichel, 2. ibid, 83 (1974) 427; 115 (1976) 177; 126 (1977) 383; 147 (1978) 239; 176 (1979) 307; 189 (1980) 129; 211 (1981) 177; 237 (1982) 61; 242 (1983) 205; 261 (1984) 69.
- R.I. Crisp and K.R. Seddon, Coord. Chem. Rev. 37 (1981) 167; R.I. 3. Crisp, ibid, 45 (1982) 237; R.P. Moulding, ibid, 52 (1983) 183.
- M. Melnik, Coord. Chem. Rev., 47 (1982) 239. 4.
- R.E. Stevens and W.L. Gladfelter, Inorg. Chem. 22 (1983) 2034. 5.
- M. Herberhold, F. Wehrmann, D. Neugebauer and G. Huttner, 6. J. Organomet. Chem., 152 (1978) 329.
- 7.
- B.A. Frenz, J.A. Ibers, Inorg. Chem., 11 (1972) 1109. B.A. Frenz, J.H. Enemark and J.A. Ibers, Inorg. Chem., 8 (1969) 8. 1288.
- P.E. Riley and R.E. Davis, Inorg. Chem., 19 (1980) 159. 9.
- 10. O.J. Scherer, J. Kerth and W.S. Sheldrick, Angew. Chem., Int. Ed. Engl., 23 (1984) 156.
- 11. P. Jaitner, W. Huber, G. Huttner and O. Scheidsteger, J. Organomet. Chem., 259 (1983) C1.

- J.H. Enemark and J.A. Ibers, Inorg. Chem., 6 (1967) 1575. 12.
- S.J. LaPlaca, W.C. Hamilton and J.A. Ibers, Inorg. Chem., 3 (1964) 13. 1491.
- S.J. LaPlaca, W.C. Hamilton, J.A. Ibers and A. Davison, Inorg. 14. Chem., 8 (1969) 1928.
- F.A. Cotton, D.J. Darensbourg and W.B.S. Holthammer, Inorg. 15. Chem., 20 (1981) 1287.
- 16.
- P.T. Greene and R.F. Bryan, J. Chem. Soc.(A), (1971) 1559. M. Lattman, B.N. Anand, S.C.C. Chu and R.D. Rosenstein, Phosphorus 17. and Sulphur, 18 (1983) 303; Organometallics, 3 (1984) 670.
- 18. S.S.C. Chu, R.D. Rosenstein, M. Lattman and B.N. Anand, J. Organomet. Chem., 265 (1984) 45. A.C. Sarapu and R.F. Fenske, Inorg. Chem., 11 (1972) 3021.
- 19.
- 20.
- D. Bright and O.S. Mills, J. Chem. Soc., Dalton Trans., (1974) 219. M.L. Valin, D. Moreiras, X. Solans, M. Font-Altaba, J. Solans, 21. F.J. Garcia-Alonso, V. Riera and M. Vivanco, Acta Crystallogr., Sec.C,41 (1985) 1312.
- 22. M.L. Valin, D. Moreiras, X. Solans, M. Font-Altaba and F.J. Garcia-Alonso, Acta Crystallogr., Sec.C. 42 (1986) 417.
- R. Fawsi, W. Hiller, I.P. Lorenz, J. Mohyla and C. Zeiher, 23. J. Organomet. Chem., 262 (1984) C43.
- 24. D. Fenske, K. Brandt and P. Stock, Z. Natursforsch., Teil B, 36 (1981) 768.
- 25. A. Antoniadis, W. Hiller, U. Hunze, H. Schaal and J. Strahle, Z. Natursforsch., Teil B, 37 (1982) 1289.
- G.J. Kruger, R.O. Heckroodt, R.H. Reimann and E. Singleton, 26. J. Organomet. Chem., 111 (1976) 225.
- 27. H. Vahrenkamp, Chem. Ber., 104 (1971) 449.
- B. Just, W. Klein, J. Kopf, K.G. Steinhauser and R. Kramlowsky. 28. J. Organomet. Chem., 229 (1982) 49.
- 29. W.K. Dean, J.B. Wethering and J.W. Moncrief, Inorg. Chem., 15 (1976) 1566.
- 30. E. Linder, M. Steinwand and S. Hoehne, Chem. Ber., 115 (1982) 2478.
- 31. H. Weber and R. Mattes, Chem. Ber., 113 (1980) 2833.
- 32. H. Hayabawa, H. Nakayama, A. Kobayashi and Y.Sasaki, Bull. Chem. Soc. Jpn., 51 (1978) 2041.
- 33. M. Laing, E. Singleton and G. Kruger, J. Organomet. Chem., 54 (1973) C30.
- 34. G.A. Carriedo, M.C. Crespo, V. Riera, M.G. Sanchez, M.L. Valin, D. Morciras and X. Solans, J. Organomet. Chem., 302 (1986) 47.
- 35. G.J. Kruger, R.O. Heckroodt, R.H. Reimann and E. Singleton, J. Organomet. Chem., 87 (1975) 323.
- 36. C.A. Bear and J. Trotter, J. Chem. Soc., Dalton Trans., (1973) 673.
- 37. U. Kunze and R. Merkel, J. Organomet. Chem., 219 (1981) 69; U. Kunze, R. Merkel and W. Winter, Angew. Chem., Int. Ed. Engl., 21 (1982) 290; W. Winter, R. Merkel and U. Kunze, Z. Naturforsch, Teil B, 38 (1983) 747.
- 38. R.E. Cobbledick and F.W.B. Einstein, Acta Crystallogr., Sec.B, 33 (1977) 2020.
- 39. W.K. Dean, G.L. Simon, P.M. Treichel and L.F. Dahl, J. Organomet. Chem., 50 (1973) 193.
- M. Ulibarri and J. Fayos, Acta Crystallogr., Sect. B, 38 (1982) 952. 40.
- J. Fayos and M. Ulibarri, Acta Crystallogr., Sect. B, 38 (1982) 3086. 41.
- S.J. Hildebrandt, D.F. Gaines and J.C. Calabrese, Inorg. Chem., 17 42. (1978) 790.
- 43. M.W. Chen, J.C. Calabrese, D.F. Gaines and D.F. Hillenbrand, J.Amer. Chem.Soc., 102 (1980) 4928.
- 44. J.C. Calabrese, M.B. Fischer, D.F. Gaines and J.W. Lott, J. Amer. Chem. Soc., 96 (1974) 6318.

- F.J. Hollander, D.H. Templeton and A. Zalkin, Inorg. Chem., 12 45. (1973) 2262.
- J.W. Lott and D.F. Gaines, Inorg. Chem., 13 (1974) 2261. 46.
- D.F. Gaines, J.W. Lott and J.C. Calabrese, Inorg. Chem., 13 (1974) 47. 2419; Chem.Commun., (1973) 295.
- J.W. Lott, D.F. Gaines, H. Shenshaw and R. Shaeffer, J. Amer. 48. Chem. Soc., 95 (1973) 3042. E.W.Abel, C.A. Burton, M.R. Churchill and K.K.G. Lin, J. Chem.
- 49. Soc., Chem.Commun., (1974) 917; M.R. Churchill and K.K.G. Lin, Inorg. Chem., 14 (1975) 1675.
- J.A. Iggo, M.J. Mays, P.R. Raithby and K. Hendrick, J. Chem. Soc., 50. Dalton Trans., (1983) 205.
- 51. E. Lindmer, I.P. Butz, S. Hoehne, W. Hiller and R. Fawzi, J. Organomet. Chem., 259 (1983) 99.
- 52. R. Mason, G.A. Rusholme, W. Beck, H. Englemann, K. Joos, B. Lindenberg and H.S. Smedal, J. Chem. Soc., Chem. Commun., (1971) 496.
- 53. M. Martin, B. Rees and A. Mitschler, Acta Crystallogr., Sect. B. 38 (1982) 6.
- 53a. R. Stults, R.O. Day, R.S. Matianelli and V.W. Day, Inorg. Chem., 18 (1979) 1847.
- 54. L.F. Dahl, E. Ishidi and R.E. Rundle, J. Chem. Phys., 26 (1957) 1750; L.F. Dahl and R.E. Rundle, Acta Crystallogr., 16 (1963) 419.
- 55. M. Laing, E. Singleton and R. Reimann, J. Organomet. Chem., 56 (1973) Č21.
- M. Laing, T. Ashworth, P. Sommerville, E. Singleton and R. Reimann, 56. J. Chem. Soc., Chem. Commun., (1971) 1251. H. Masuda, T. Taga, T. Sowa, T. Kawamera and T. Yonezawa, Inorg.
- 57. Chim., Acta, 101 (1985) 45.
- M.R. Churchill and A. Holladay, Cryst. Struct. Commun., 10 (1981) 45. M.J. Bennet and R. Mason, J. Chem.Soc. (A), (1968) 75. 58.
- 59.
- J.M. Rosalky, B. Metz, F. Mathey and R. Weiss, Inorg. Chem., 16 60. (1977) 3307.
- 61. R. Colton, C.J. Commons and B.F. Hoskins, J. Chem. Soc., Chem. Commun., (1975) 363; C.J. Commons and B.F. Hoskins, Aust. J. Chem., 28 (1975) 1663.
- 62. L.S. Benner, M.M. Olmstead and A.L. Balch, J. Organomet. Chem., 159 (1978) 289.
- 63. J. Gimeno, V. Riera, M.A. Ruiz, A.M. Manotti-Lanfredi and A. Tiripicchio, J. Organomet. Chem., 268 (1984) C13.
- R.J. Doedens, W.T. Robinson and J.A. Ibers, J. Amer. Chem. Soc., 64. 89 (1967) 4323.
- 65. B.F. Hoskins and R.J. Steen, Aust. J. Chem., 36 (1983) 683.
- 66. L.Y.Y. Chan and F.W.B. Einstein, J. Chem. Soc., Dalton Trans., (1973) 111.
- 67. J.P. Crow, W.R. Cullen, F.L. Hou, L.Y.Y. Chan and F.W.B. Einstein, J. Chem. Soc., Chem. Commun., (1971) 1229.
- 68. A. Almenniger, G.G. Jacobson and H.M. Seip, Acta Chem. Scand., 23 (1969) 685.
- 69. S.R. Finnimore, R. Goddard, S.D. Killops, S.A.R. Knox and P. Woodward, J. Chem. Soc., Chem. Commun., (1975) 391; J. Chem. Soc., Dalton Trans., (1978) 1247.
- 70. E.W. Abel, C.A. Burton, M.R. Churchill and K.K.G. Lin, J. Chem. Soc., Chem. Commun., (1974) 268; M.R. Churchill and K.K.G. Lin, Inorg. Chem., 14 (1975) 1133.
- 71. B. Buss, D. Altena, R. Mews and O. Glemser, Angew. Chem., Int. Ed. Engl., 17 (1978) 280.
- 72. M.W. Chen, D.F. Gaines and L.G. Hoard, Inorg. Chem., 19 (1980) 2989.
- 73. M.C. van Derveer and J.M. Burlitch, J. Organomet. Chem., 197 (1980) 357.
- 73a. J.C. Crowley, H.W. Dodgen and R.D. Willett, J. Phys. Chem., 86 (1982) 4046.
- 74. W. Clegg and S. Morton, Acta Crystallogr., Sect. B, 34 (1978) 1707.
- J.D. Korp, I. Bernal, J.L. Atwood, W.E. Hunter, F. Calderazzo and 75. D. Vitali, J. Chem. Soc., Chem. Commun., (1979) 576.
- 76. H. Vahrenkamp, Chem. Ber., 111 (1978) 3472.
- B. Deppisch, H. Schaffer, D. Binder and W. Leske, Z. Anorg. Allg. 77. Chem., 519 (1984) 53.
- L.F. Dahl and C.H. Wei, Acta Crystallogr., 16 (1963) 611. 78.
- 79. S. Jeannin, Y. Jeannin and G. Lavigne, Transition Met. Chem., 1 (1976) 195.
- 80. W.R. Cullen, L. Mihichuk, F.W.B. Einstein and J.S. Field, J. Organomet. Chem., 73 (1974) C53.
- 81. E. Lindner, K. Auch, W. Hiller and R. Fawzi, Angew. Chem. Int. Ed. Engl., 23 (1984) 320.
- 82. H. Alper, F. Sibtain, F.W.B. Einstein and A.C. Willis, Organometallics, 4 (1985) 604.
- 83. E. Rottinger, A. Trenkle, R. Muller and H. Vahrenkamp, Chem. Ber., 113 (1980) 1280.
- 84. S. Hoehne, E. Lindner and B. Schilling, J. Organomet. Chem., 139 (1977) 315.
- 85. H. Weber and R. Mattes, Chem. Ber., 112 (1979) 95.
- E. Lindner, I.P. Butz, W. Hiller, R. Fawzi and S. Hoehne, Angew. 86. Chem. Int. Ed. Engl., 22 (1983) 996.
- 87. D.A. Dubois, E.N. Duesler and R.T. Paine, Inorg. Chem., 24 (1985) 3.
- 88. E.W. Abel, I.D.H. Towle, T.S. Cameron and R.E. Cordes, J. Chem. Soc., Chem. Commun. (1977) 285; E.W. Abel, G. Farrow and I.D.H. Towle, J. Chem. Soc., Dalton Trans., (1979) 1943.
- 89. E.W. Abel, I.D.H. Towle, T.S. Cameron and R.E. Cordes, J. Chem. Soc., Dalton Trans., (1979) 1943.
- 90. W.A. Herrmann, M.L. Ziegler and K. Weidenhammer, Angew. Chem. Int. Ed. Engl., 15 (1976) 368.
- R. Bau, S.W. Kirtley, T.N. Sorrel and S. Winarko, J. Amer. Chem. 91. Soc., 96 (1974) 988.
- 92. S.W. Kirtley, J.P. Olsen and R. Bau, J. Amer. Chem. Soc., 95 (1973) 4532.
- V. Kullmer, E. Rottinger and H. Vahrenkamp, J. Chem. Soc., 93. Chem. Commun. (1977) 782; Z. Naturforsch., Teil B, 34 (1979) 224.
- 94. E. Horn, M.R. Snow and P.C. Zeleny, Aust. J. Chem., 33 (1980) 1659.
- 95. R. Shakir, J.L. Atwood, T.S. Janik and J.D. Atwood, J. Organomet. Chem., 190 (1980) C14.
- 96. P.E. Jaitner, P. Peringer, G. Huttner and L. Zsolnai, Transition Met. Chem., 6 (1981) 86.
- 97. D.W.H. Rankin and A. Robertson, J. Organomet. Chem., 85 (1975) 1225.
- 98. N.I. Gapotchenko, Y.T. Struchkov, N.V. Alekseev and I.A. Ronova, Zh. Strukt. Khim., 12 (1971) 571; N.I. Gapotchenko, N.V. Alekseev, A.B. Antonova, K.N. Anisimov, N.E. Kolobova, I.A. Ronova and Y.T. Struchkov, J. Organomet. Chem., 23 (1970) 525.
- 99. D.J. Brauer and R. Eigen, Organometallics, 2 (1983) 263.
- 100. W.R. Cullen, F.W.B. Einstein, R.K. Pomeroy and P.L. Vogel, Inorg. Chem., 14 (1975) 3017.
- 101. S. Onaka, Bull. Chem. Soc., Jpn., 48 (1975) 319.
- 102. B.F. Hoskins, R.J. Steen and T.W. Turney, Inorg. Chim. Acta, 77 (1983) L69.
- 103. P.H. Bird, N.J. Coville, I.S. Butler and M.L. Schneider, Inorg. Chem., 12 (1973) 2902.
- H. Vahrenkamp, Z. Naturforsch., Teil B, 30 (1975) 814.
 E. Keller and H. Vahrenkamp, Chem. Ber., 111 (1978) 65. 104.
- 105.
- 106. H.J. Langenbach, E. Rottinger and H. Vahrenkamp, Chem. Ber., 113 (1980) 42.

- J. Keijsper, P. Grimberg, G. Van Koten, K. Vrieze, M. 107.
- Christophersen and C.H. Stam, Inorg. Chim. Acta, 102 (1985) 29.
- 108a. Y.T. Struchkov, K.N. Anisimov, O.T. Osipova, N.E. Kolobova and
- A.N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 172 (1972) 107. 108b. A.L. Rheingold, W.K. Meckstroth and D.P. Ridge, Inorg. Chem., 25
- (1986) 3706. 109. S.H. Strauss, K.D. Abney, K.M. Long and O.P. Anderson, Inorg.
- Chem., 23 (1984) 1994. W. Clegg and P.J. Wheatley, J. Chem. Soc., Dalton Trans., (1973) 90. 110.
- 111. W. Clegg and P.J. Wheatley, J. Chem. Soc., Dalton Trans., (1974) 511.
- W. Clegg and P.J. Wheatley, J. Chem. Soc., Dalton Trans., (1974) 424.
 W. Clegg and P.J. Wheatley, J. Chem. Soc. (A), (1971) 3572.
 M.L. Katcher and G.L. Simon, Inorg. Chem., 11 (1972) 1651. 112.
- 113.
- 114.
- K. Triplett and M.D. Curtis, J. Amer. Chem. Soc., 97 (1975) 5747. 115.
- P. Braunstein, D. Matt, O. Bars, D. Grandjean, Angew. Chem. Int. 116. Ed. Engl. 18 (1979) 797.
- P. Braunstein, D. Matt, O. Bars, M. Louer, D. Grandjean, J. Fischer 117. and A. Mitschler, J. Organomet. Chem., 213 (1981) 79.
- 118. D. Moras, J. Dehand and R. Weiss, Compt. Rend. Acad. Sc. Paris, 267 (1968) 1571.
- 119. H.D. Kaesz, R. Bau and M.R. Churchill, J. Amer. Chem. Soc., 89 (1967) 2775; M.R. Churchill and R. Bau, Inorg. Chem., 6 (1967) 2086.
- M. Muller and H. Vahrenkamp, Chem. Ber., 116 (1983) 2322. 120.
- 121. H.J. Haupt, H. Preut and W. Wolfes, Z. Anorg. Allg. Chem., 446 (1978) 105.
- 122. H. Preut and H.J. Haupt, Acta Crystallogr., Sect. B, 37 (1981) 688.
- 123. H. Preut and H.J. Haupt, Acta Crystallogr., Sect. B, 38 (1982) 1290.
- 124. J.H. Tsai, J.J. Flynn and F.P. Boer, Chem. Commun., (1967) 702.
- 125. D. Seyferth, R.S. Henderson, J.P. Fackler, Jr., and A.M. Mazany, J. Organomet. Chem., 213 (1981) C21.
- D.A. Bohling, T.P. Gill and R.K. Mann, Inorg. Chem. 20 (1981) 194. 126.
- P. Braunstein, J.M. Jud and J. Fischer, Chem. Commun., (1983) 5. 127.
- 128. G.L. Simon and L.F. Dahl, J. Amer. Chem. Soc., 95 (1973) 783.
- J.L. Atwood, I. Bernal, F. Calderazzo, L.G. Canada, R.Poli, R.D. 129. Rogers, C.A. Veracini and D. Vitali, Inorg. Chem., 22 (1983) 1797.
- 130. S. Onaka, Y. Kondo, K. Toriumi and T. Ito, Chem. Lett., (1980) 1605.
- 131. B.K. Nicholson, J. Simpson and W.T. Robinson, J. Organomet. Chem., 47 (1980) 1605.
- 132. H.J. Haupt, W. Wolfes and H. Preut, Inorg. Chem., 15 (1976) 2920.
- H. Preut and H.J. Haupt, Acta Crystallogr., Sect. B, 35 (1979) 729. 133.
- 134. H. Preut and H.J. Haupt, Acta Crystallogr., Sect. B, 36 (1980) 678.
- 135. H. Preut and H.J. Haupt, Chem. Ber., 107 (1974) 2860.
- 136. K.D. Bos, E.J. Bulten, J.G. Noltes and A.L. Spek, J. Organomet. Chem., 71 (1974) C52; 92 (1975) 33.
- 137. H. Preut and H.J. Haupt, Z. Anorg. Allg. Chem., 422 (1976) 47.
- 138. A.L. Spek, K.D. Bos, E.J. Bulten and J.G. Noltes, Inorg. Chem., 15 (1976) 339.
- 139. H. Preut and H.J. Haupt, Acta Crystallogr., Sect. B, 35 (1979) 2191.
- 140. C.J. Besecker, V.W. Day, W.G. Klemperer and M.R. Thompson, Inorg. Chem., 24 (1985) 44.
- C.G. Howard, G.S. Girolami, G. Wilkinson, M. Thornton-Pett and 141. M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1983) 2631.
- 142. M.A. Andrews, J. Eckert, J.A. Goldstone, L. Passell and B. Swanson, J. Amer. Chem. Soc., 105 (1983) 2262.
- 143. H.M. Seip and R. Seip, Acta Chem. Scand., 24 (1970) 3431.
- 144. C.P. Casey, C.A. Bunnell and J.C. Calabrese, J. Amer. Chem. Soc., 96 (1974) 4008.
- 145. V.W. Day, B.R. Stults, K.J. Reimer and A. Shaver, J. Amer. Chem. Soc., 98 (1976) 436.

- C.P. Casey and C.A. Bunnel, Chem. Commun., (1974) 733; J. Amer. 146. Chem. Soc., 98 (1976) 436.
- C.B. Knobler, S. Schreiber Crawford and H.D. Kaesz, Inorg. Chem., 147. 14 (1975) 2062.
- C.P. Casey, R.A. Boggs, D.F. Marten and J.C. Calabrese, Chem. 148. Commun., (1973) 243.
- M.L. Bruce, B.L. Goodall, M.Z. Iqbal, F.G.A. Stone, R.J. Doedens and 149. R.G. Little, Chem. Commun., (1971) 1595; R.G. Little and R.G. Doedens, Inorg. Chem., 12 (1973) 840.
- R.G. Little and R.J. Doedens, Inorg. Chem., 12 (1973) 844. E.W. Abel, R.J. Rowley, R. Mason and K.M. Thomas, Chem. 150.
- 151. Commun., (1974) 72.
- R.M. Ceder, J. Sales, X. Solans and M. Font-Altaba, J. Chem. Soc., 152. Dalton Trans., (1986) 1351.
- R.J. McKinney, C.B. Knobler, B.T. Huie and H.O. Kaesz, J. Amer. Chem. Soc., 99 (1977) 2988. 153.
- E. Lindner, G. Funk and S. Hoehne, Chem. Ber., 114 (1981) 2465; 154. Angew. Chem. Int. Ed. Engl., 18 (1979) 535.
- E. Lindner, H-J. Eberle and S. Hoehne, Chem. Ber., 114 (1981) 413. 155.
- E. Lindner, G. von Au, H-J. Eberle and S. Hoehne, Chem. Ber., 115 156. (1982) 513.
- E. Lindner, K.A. Starz, N. Pauls and W. Winter, Chem. Ber., 116 157. (1983) 1070.
- E. Lindner and H-J. Eberle, Angew. Chem. Int. Ed. Engl. 19 (1980) 158. 73.
- E. Lindner, F. Zinsser, W. Hiller and R. Fawzi, J. Organomet. 159. Chem., 288 (1985) 317.
- 160. J. Engelbrecht, T. Greiser and E. Weiss, J. Organomet. Chem., 204 (1981) 79.
- A. Mowby and G. Pringle, J. Inorg. Nucl. Chem., 34 (1972) 877. 161.
- E. Lindner, G. Funk and S. Hoehne, Chem. Ber., 114 (1981) 3855. 162.
- S.Z. Goldberg, E.N. Duesler and K.M. Raymond, Chem. Commun., 163. (1971) 826.
- E. Lindner, K.A. Starz and S. Hoehne, Z. Naturforsch., Teil B, 37 164. (1982) 1301.
- E. Lindner, A. Rau and S. Hoehne, Chem. Ber., 114 (1981) 3281; 165. Angew. Chem. Int. Ed. Engl., 20 (1981) 787. Ch. G. Howard, G.S. Girolami, G. Wilkinson, M. Thornton-Pett and
- 166. M.B. Hursthouse, Chem. Commun., (1983) 1163. M.A. Bennett, G.B. Robertson, R. Watt and P.O. Whimp, Chem.
- 167. Commun., (1971) 752.
- 167a. G.S. Girolami, E. Wilkinson, M. Thornton-Pett and M.B. Hursthouse, J. Amer. Chem. Soc., 105 (1983) 6752.
- M. Laing and P.M. Treichel, Chem. Commun., (1975) 746. 168.
- D.L. Guimmett, J.A. Labinger, Y.N. Bonfiglio, S.T. Masuo, E. Shearin 169. and J.S. Miller, J. Amer. Chem. Soc., 104 (1982) 6858. R.J. Doedens, J.T. Veal and R.G. Little, Inorg. Chem., 14 (1975) 1138.
- 170.
- M.G. Newton, N.S. Pantaleo, R.B. King and S.P. Diefenbach, Chem. 171. Commun., (1979) 55.
- H.Schmidbaur, T. Costa, B. Milewski-Mahrla, F.H. Köhler, Y.H. Tsay, 172. C. Krüger, J. Abart and F.E. Wagner, Organometallics, 1 (1982) 1266.
- 173. J.A. Gladysz, J.C. Selover and C.E. Strouse, J. Amer. Chem. Soc., 100 (1978) 6766.
- P.G. Lenhert, C.M. Lubehart and K. Srinivasan, J. Amer. Chem. Soc., 174. 106 (1984) 124.
- 175. E. Lindner, A. Rau and S. Hoehne, J. Organomet. Chem., 218 (1981) 41.
- 176. E. Lindner, A. Rau and S. Hoehne, Angew. Chem. Int. Ed. Engl. 20 (1981) 788.
- 177. E. Lindner, A. Rau and S. Hoehne, Angew. Chem. Int. Ed. Engl. 18 (1979) 534.

- 178. J. Liehr, H.J. Seibold and H. Behrens, J. Organomet. Chem., 248 (1983) 351.
- 179. M.Y. Barrow, J.L. Davidson, W. Harrison, D.W.A. Sharp, G.A. Sim and F.B. Wilson, Chem. Commun., (1973) 583. M.D. Rausch, B.H. Edwards, Y.L. Atwood and R.D.Rogers, Organo-
- 180. metallics, 1 (1982) 1567.
- 181. D.A. Lesch, J.W. Richardson, Jr., R.A. Jacobson and R.J. Angelici, J. Amer. Chem. Soc., 106 (1984) 2901.
- B.J. Brisdon, D.A. Edwards, J.W. White and M.G.B. Drew, J. Chem. 182. Soc., Dalton Trans., (1980) 2129.
- G.B. Robertson and P.O. Whimp, Inorg. Chem., 12 (1973) 1740. 183.
- J.R. Bleeke and J.J. Kotyk, Organometallics, 4 (1985) 194. 184.
- M. Brookhart, W. Lamanna and M. Beth Humphrey, J. Amer. Chem. 185. Soc., 104 (1982) 2117.
- J.A.D. Joffroys and Ch. Mottors, J. Chem. Soc., Dalton Trans., 186. (1977) 1624.
- 187. F. Mathey, A. Mitschler and R. Weiss, J. Amer. Chem. Soc., 100 (1978) 5748.
- 188. E.W. Abel, I.W. Nowell, A.G.J. Mondinos and C. Towers, Chem. Commun., (1973) 258.
- P.J. Fitzpatrick, Y. LePage, J. Sedman and I.S. Butler, Inorg. Chem., 189. 20 (1981) 2852; A.F. Berndt and R.E. Marsh, Acta Crystallogr., 16 (1963) 118.
- A.N. Nesmeyanov, G.K. Sermon, E.V. Bryukova, K.N. Anisimov, N.E. Kolobova, Yu. V. Makarov and T.L. Khotsyamova, Izv. Akad. 190. Nauk SSSR, Ser. Khim., (1968) 929. T.L. Kohotsyanova, S.I. Kuznetsov, E.V. Bryukhova and Yu. V.
- 191. Makarov, J. Organomet. Chem., 88 (1975) 351. M.A. Bush, T.A. Dullforce and G.A. Sim, Chem. Commun., (1969)
- 192. 1491.
- N.M. Loim, Z.N. Parnes, V.G. Andrianov, Yu. T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 201 (1980) 301. N.M. Loim, M.V. Laryukova, V.G. Andrianov, V.A. Tsiryapkin, Z.N. 193.
- 194. Parnes and Yu. T. Struchkov, J. Organomet. Chem., 248 (1983) 73.
- 195. M.J. Barrow, O.S. Mills, F. Hague and P.L. Pauson, Chem. Commun., (1971) 1239; M.J. Barrow and O.S. Mills, Acta Crystallogr., Sect. B, 30 (1974) 1635.
- 196. M.P. Balem, M. Le Plousennec and M. Louer, Inorg. Chem., 21 (1982) 2573.
- 197. M.B. Honan, J.L. Atwood, I. Bernal and W.A. Herrmann, J. Organomet. Chem., 179 (1979) 403.
- 198. G.W. Harris, J.C.A. Boeyens and N.J. Coville, J. Organomet. Chem., 255 (1983) 87.
- P. Friedrich, G. Besl, E.O. Fischer and G. Huttner, J. Organomet. 199. Chem., 139 (1977) C68.
- E. Hädicke and W. Hoppe, Alta Crystallogr., Sect. B, 27 (1971) 760. 200.
- U. Schubert, Organometallics, 1 (1982) 1085. 201.
- E.O. Fischer, W. Kleine, W. Schambeck and U. Schubert, Z. 202. Naturforsch., Teil B, 36 (1981) 1575.
- 203. W.A. Herrmann, J.L. Hubbard, I. Bernal, J.D. Korp, B.L. Haymore and G.L. Hillhouse, Inorg. Chem., 23 (1984) 2978.
- 204. H. Berke, G. Huttner and J. von Seyerl, J. Organomet. Chem., 218 (1981) 193.
- R.E. Cramer, K.T. Higa and J.W. Gilje, Organometallics, 4 (1985) 205. 1140.
- A.N. Nesmeyanov, G.G. Aleksandrov, A.B. Antonova, K.N. Anisimov, 206. N.E. Kolobova and Yu. T. Struchkov, J. Organomet. Chem., 110 (1976) C36.
- 207. N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, O.M. Khitrova, A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 262 (1984) 39.

- 208. N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko. O.M. Khitrova, A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 265 (1984) 271.
- 209. A.D. Redhouse, J. Organomet. Chem., 99 (1975) C29.
- N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, I.N. Chechulina, A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 238 (1982) 223.
- N.E. Kolobova, O.S. Zhvanko, L.L. Ivanov, A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 302 (1986) 235.
- W.A. Herrmann, J. Plank, J.L. Hubbard, G.W. Kriechbuam,
 W. Kalcher, B. Koumbouris, G. Yhl, A. Schäfer, M.L. Ziegler,
 H. Pfisterer, C. Pahl, J.L. Atwood and R.D. Rogers, Z. Naturforsch,
 Teil B, 38 (1983) 1392.
- 213. H. Berke, G. Huttner and J. von Seyerl, Z. Naturforsch, Teil B, 36 (1981) 1277.
- G.W. Kriechbaum, W.A. Herrmann, M.L. Ziegler, and H. Pfisterer, Z. Anorg. Allg. Chem., 507 (1983) 81.
- 215. W.A. Herrmann, G. Kriechbaum, M.L. Ziegler and P. Wulkmitz, Chem. Ber., 114 (1981) 276.
- 216. C.F. Barrientos-Penna, F.W.B. Einstein, D. Sutton and A.C. Willis, Inorg. Chem., 19 (1980) 2740.
- 217. C. Barbeau, K.S. Dichmann and L. Ricard, Can. J. Chem., 51 (1973) 3027.
- M.J. Zarvorotko, R. Shakir, J.L. Atwood, V. Sriyunyongwat, S.D. Reynolds and Th. A. Albright, Acta Crystallogr., Sect. B, 38 (1982) 1572.
- 219. G. Huttner, H.D. Müller, P. Friedrich and U. Kölle, Chem. Ber., 110 (1977) 1254.
- J.Y. Le Marouille, C. Lelay, A. Benoit, D. Grandjean, D. Touchard, H. Le Bozec and P. Ditneuf, J. Organomet. Chem., 191 (1980) 133.
- 221. C. Barbeau and R.J. Dubey, Can. J. Chem., 51 (1973) 3684.
- 222. D. Wormsbächer, F. Edelmann and U. Behrens, Chem. Ber., 115 (1982) 1332.
- 223. G. Evrard, R. Thomas, B.R. Davis and I. Bernal, Inorg. Chem., 15 (1976) 52.
- 224. J.A. Potenza, R. Johnson, S. Rudich and A. Efraty, Acta Crystallogr., Sect. B, 36 (1980) 1933.
- 225. J. Heck, W. Massa and P. Weinig, Angew. Chem. Int. Ed. Engl., 23 (1984) 722.
- 226. M.R. Churchill and F.R. Scholer, Inorg. Chem., 8 (1969) 1950.
- 227. E.D. Honig, M. Quin-jin, W.T. Robinson, P.G. Willard and D.A. Sweigart, Organometallics, 4 (1985) 871.
- 228. P.A. Vella, M. Beno, A.J. Schultz and J.M. Williams, J. Organomet. Chem., 205 (1981),71.
- A.B. Antonova, S.V. Kovalinko, E.D. Korniyets, A.A. Johansson, Yu. T. Struchkov, A.I. Ahmedov and A.I. Yanovsky, J. Organomet. Chem., 244 (1983) 35.
- 230. P.G. Le Borgne, E. Gentric and D. Grandjean, Acta Crystallogr., Sect. B, 31 (1975) 2824.
- 231. G.G. Aleksandrov, A.B. Antonova, N.E. Kolobova, N.S. Obezyuk and Yu. T. Struchkov, Koord. Khim., 5 (1979) 279.
- 232. A.D. Redhouse and W.A. Herrmann, Angew. Chem. Int. Ed. Engl. 15 (1976) 615.
- 233. I.B. Benson, S.A.R. Knot, R.F.D. Stansfield and P. Woodward, Chem. Commun., (1977) 404; J. Chem. Soc., Dalton Trans., (1981) 51.
- 234. W.A. Herrmann, J. Plank, M.L. Ziegler and K. Weidenhammer, J. Amer. Chem. Soc., 101 (1979) 3133.
- 235. M.Y. McGeary, T.L. Tonker and J.L. Templeton, Organometallics, 4 (1985) 2102.
- A. Mawby, P.J.C. Walker and R.J. Mawby, J. Organomet. Chem., 55 (1973) C39.

- P.M. Treichel, K.P. Fivizzani and K.J. Haller, Organometallics, 1 237. (1982) 931.
- 238. L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 284 (1985) 345.
- R.J. Bernhardt, M.A. Wilmoth, J.J. Weers, D.M. La Brush, D.P. 239. Eyman and J.C. Huffman, Organometallics, 5 (1986) 883.
- G. Huttner and W. Gartske, Chem. Ber., 107 (1974) 3786. 240.
- G. Huttner, D. Neugebauer and A. Razavi, Angew. Chem. Int. Ed. 241. Engl., 14 (1975) 352.
- 242. E.P. Kündig, P.L. Timms, B.A. Kelly and P. Woodward, J. Chem. Soc., Dalton Trans., (1983) 901.
- R.L. Harlow, P.J. Krusic, R.J. McKinney and S.S. Wreford, Organo-243. metallics, 1 (1982) 1506.
- J.R. Bleeke and J.J. Kotyk, Organometallics, 2 (1983) 1263. 244.
- 245.
- A. Haaland, Inorg. Nucl. Chem. Lett., 15 (1979) 267.
 W. Bünder and E. Weiss, Z. Naturforsch, Teil B, 33 (1978) 1235. 246.
- 247. A. Almenningen, A. Haaland and S. Samdal, J. Organomet. Chem. 149 (1978) 219; A. Almenningen, S. Samdal and A. Haaland, Chem. Commun. (1977) 14.
- 248. L. Fernholt, A. Haaland, R. Seip, J.L. Robbins and J.C. Smart, J. Organomet. Chem., 194 (1980) 351.
- 249. D.P. Freyberg, J.L. Robins, K.N. Raymond and J.C. Smart, J. Amer. Chem. Soc., 101 (1979) 892.
- 250. J.A.D. Jeffreys and J. MacFie, J. Chem. Soc., Dalton Trans., (1978) 144.
- 251. J.T. Weed, M.F. Rettig and R.M. Wing, J. Amer. Chem. Soc., 105 (1983) 6510.
- 252. J. Fischer, A. De Cian and F. Nief, Alta Crystallogr., Sect. B, 37 (1981) 1067.
- 253. Ch. G. Howard, G.S. Girolami, G. Wilkinson, M. Thornton-Pett, and M.B. Hursthouse, J. Amer. Chem. Soc., 106 (1984) 2033.
- 254. I. Bernal, J.D. Korp, W.A. Herrmann and R. Serrano, Chem. Ber., 117 (1984) 434.
- 255. N. Wiberg, H.W. Häring, G. Huttner and P. Friedrich, Chem. Ber., 111 (1978) 2708.
- 256. J.L. Calderon, S. Fontana, E. Frauendorfer, V.W. Day and B.R. Stults, Inorg. Chim. Acta, 17 (1976) L31.
- 257 J.L. Calderon, F.A. Cotton, B.G. De Boer and N. Martinez, Chem. Commun., (1971) 1476.
- 258. R.M. Kirchner, T.J. Marks, J.S. Kustoff and J.A. Ibers, J. Amer. Chem. Soc., 95 (1973) 6602.
- 259. J. Keijsper, G. van Koten, K. Vrieze, M. Zoutberg and C. Histam, Organometalics, 4 (1985) 1306.
- 260. R.D. Adams, J. Amer. Chem. Soc., 102 (1980) 7476.
- 261. M. Leyendecker, W.S. Sheldrick and C.G. Kreiter, J. Organomet. Chem., 270 (1984), C37.
- 262. Ch. G. Howard, G. Wilkinson, M. Thornton-Pett and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1983) 2025. L.N. Lewis, J.C. Huffman and K.G. Caulton, J. Amer. Chem. Soc.,
- 263. 102 (1980) 403; Inorg. Chem., 19 (1980) 1276.
- J. Martin-Gil, J.A.K. Howard, R. Navarro and F.G.A. Stone, Chem. 264. Commun., (1979) 1168.
- 265. K. Folting, J.C. Huffman, L.N. Lewis and K.G. Caulton, Inorg. Chem., 18 (1979) 3483.
- 266. J.I. Davies, Ch. G. Howard, A.C. Skapski and G. Wilkinson, Chem. Commun., (1982) 1077.
- M. Creswick, I. Bernal and W.A. Herrmann, J. Organomet. Chem., 267. 172 (1979) C39; M. Creswick, I. Bernal, B. Reiter and W.A. Herrmann, Inorg. Chem., 21 (1982) 645.
- 268. D.A. Clemente, M.C. Biagini, B. Rees and W.A. Herrman, Inorg. Chem., 21 (1982) 3741.

- L.E. Manzer and L.J. Guggenberger, J. Organomet. Chem., 139 (1977) 269. C34.
- G. Ferguson, W.J. Laws, M. Parvez and R.J. Puddephatt, Organomet. 270. Chem., 2 (1983) 276.
- H. Vahrenkamp, Chem. Ber., 107 (1974) 3867. 271.
- J.C.T.R. Burckett-St. Laurent, M.R. Caira, R.B. English, R.J. Haines 272. and L.R. Nassimbeni, J. Chem. Soc., Dalton Trans., (1977) 1077. M.R. Churchill, F.J. Rotella, R.B. King and M.N. Ackermann,
- 273. J. Organomet. Chem., 99 (1975) C15.
- F.H. Köhler, N. Hebendanz, U. Thewlat, B. Kanellakopulos and 274. R. Klenze, Angew, Chem. Int. Ed. Engl., 23 (1984) 721. G.E. Herberich, J. Hengesbach, G. Huttner, A. Frank and U.
- 275.
- Schubert, J. Organomet. Chem., 246 (1983) 141. W.A. Herrmann, J. Weichmann, M.L. Ziegler and H. Pfisterer, Angew. Chem. Ind. Ed. Engl., 21 (1982) 551. E.M. Meyer and C. Floriani, Angew. Chem. Int. Ed. Engl., 25 (1986) 276.
- 277. 356.
- N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu. T. Struchkov 278. and D.N. Kursanov, J. Organomet. Chem., 128 (1977) 381.
- F.W.B. Einstein and J.S. Field, J. Chem. Soc., Dalton Trans., (1975) 279. 172.
- 280. F.W.B. Einstein and A.C. Macgregor, J. Chem. Soc., Dalton Trans., (1974) 783.
- G. Huttner, H.D. Müller, A. Frank and H. Lorenz, Angew. Chem. 281. Int. Ed. Engl., 14 (1975) 705.
- 282. G.E. Herberich, J. Hengesbach, U. Kölle, G. Huttner and A. Frank, Angew. Chem., 88 (1976) 450.
- K. Weidenhammer, W.A. Herrman and M.L. Ziegler, J. Anorg. Allg. 283. Chem., 457 (1979) 183.
- M. Herberhold, D. Reiner, B. Zimmer-Gasser and U. Schubert, Z. 284. Naturforsch., Teil B, 35 (1980) 1281.
- G. Huttner, H-D. Müller, V. Bejenke and O. Orama, Z. Naturforsch, 285. Teil B, 31 (1976) 1166.
- 286. G. Huttner, H-G. Schmid and H. Lorenz, Chem. Ber., 109 (1976) 3741.
- 287. R.J. McKinney, B.T. Huie, C.B. Knobler and H.D. Kaesz, J. Amer. Chem. Soc., 95 (1973) 633; B.T. Huie, C.B. Knobler, R.J. McKinney and H.D. Kaesz, J. Amer. Chem. Soc., 99 (1977) 7862.
- 288. B.T. Huie, C.B. Knobler, G. Firestein, R.J. McKinney and H.D. Kaesz, J. Amer. Chem. Soc., 99 (1977) 7852.
- V.G. Andrianov, Yu. T. Struchkov, N.I. Pyshnograeva, V.N. Setkina 289. and D.N. Kursanov, J. Organomet. Chem., 206 (1981) 177.
- 290. E. Lindner, S. Hoehne and J-P. Gumz, Z. Naturforsch, Teil B, 35 (1980) 937.
- 291. S. Hoehne, E. Lindner and J-P. Gumz, Chem. Ber., 111 (1978) 3818.
- 292. M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 293. D. Messer, G. Landgraf and H. Behrens, J. Organomet. Chem., 172 (1979) 349.
- 294. G. Huttner, V. Bejenke and H.D. Müller, Cryst. Struct. Commun., 5 (1976) 437.
- M.R. Churchill, S.A. Julis, R.B. King and C.A. Harmon, 295. J. Organomet. Chem., 142 (1977) C32; M.R. Churchill and S.A. Julis, Inorg. Chem., 17 (1978) 2951.
- V.G. Andrianov, Yu.T. Struchkov, P.V. Petrovskii, E.I. Fedin, D.M. 296. Kursanov, S.P. Dolgova and V.N. Setkina, J. Organomet. Chem., 221 (1981) 183.
- 297. W.A. Herrmann, K. Weidenhammer and M.L. Liegler, Z. Anorg. Allg. Chem., 460 (1980) 200.
- A.S. Batsanov, S.P. Dolgova, V.I. Bakhmutov, Yu. T. Struchkov, V.N. 298. Setkina and D.N. Kursanov, J. Organomet. Chem., 291 (1985) 341.

- P. Legzdins, Ch. R. Nurse and S.J. Rettig, J. Amer. Chem. Soc., 105 299. (1983) 3728.
- R.C. Elder, F.A. Cotton and R.A. Schunn, J. Amer. Chem. Soc., 89 300.
- (1967) 3645; R.C. Elder, Inorg. Chem., 13 (1974) 1037. D.R. Wilson, Y.Z. Liu and R.D. Ernst, J. Amer. Chem. Soc., 104 (1982) 1120; M.C. Böhm, R.D. Ernst, R. Gleiter and D.R. Wilson, 301. Inorg. Chem., 22 (1983) 3815.
- S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, Chem. 302. Commun., (1983) 1128.
- N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu. T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 186 (1980) 331. N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu. T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 206 (1981) 169. W.A. Herrmann, I. Schweizer, P.S. Skell, M.L. Ziegler, K. -303.
- 304.
- 305. Weidenhammer and B. Nuber, Chem. Ber., 112 (1979) 2423.
- G. Huttner, U. Weber, B. Sigwarth, O. Scheidsteger, H. Lang and L. Zsolnai, J. Organomet. Chem., 282 (1985) 331. 306.
- G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai and O. Orama, Organometallics, 4 (1985) 326. S.B. Butts, E.M. Holt, S.H. Strauss, N.W. Alcock, R.E. Stimson and 307.
- 308. D.F. Shriver, J. Amer. Chem. Soc., 101 (1979) 5864; S.B. Butts, S.H. Strauss, E.M. Holt, R.E. Stimson, N.W. Alcock and D.F. Shriver, J. Amer. Chem. Soc., 102 (1980) 5093.
- 309. S.J. Rettig, A. Storr and J. Trofter, Can. J. Chem., 59 (1981) 2391.
- U. Schubert, K. Ackermann and B. Wörle, J. Amer. Chem. Soc., 104 310. (1982) 7378.
- 311. U. Schubert, K. Ackermann, G. Kraft and B. Wörle, Z. Naturforsch., Teil B, 38 (1983) 1488; U. Schubert, G. Kraft and E. Walther, Z. Anorg. Allg. Chem., 519 (1984) 96.
- 312. F. Carré, G. Cerveau, E. Colomer and R.J.P. Corriu, J. Organomet. Chem., 229 (1982) 257.
- 313. Kh. A.I.F.M. Mannan, Acta Crystallogr., Sect. B, 24 (1968) 603.
- R.F. Bryan, J. Chem. Soc. (A), (1968) 696. 314.
- 315. S. Onaka, Chem. Letters, (1978) 1163.
- Yu. T. Struchkov, Yu. N. Belokon, V.M. Belikov, I.E. Zaltser and 316. G.G. Alekesandrov, J. Organomet. Chem., 210 (1981) 411.
- M.D. Rausch, B.H. Edwards, R.D. Rogers and J.L. Atwood, J. Amer. 317. Chem. Soc., 105 (1983) 3882.
- A.A. Pasynskii, A.S. Antsyschkina, Yu. V. Shripkin, V.T. Kalinnikov, 318. M.A. Porai-Koshits, V.N. Ostrikova and G.G. Sadikov, Zh. Neorg. Khim., 26 (1981) 2435; Yu. V. Shripkin, A.A. Pasynskii, V.T. Kalinnikov, M.A. Porai-Koshits, Z. Kh. Minacheva, A.S. Antsyschkina and V.N. Ostrikova, J. Organomet. Chem., 231 (1982) 205.
- W.A. Herrmann, H. Biersack, B. Balbach and M.L. Ziegler, Chem. 319. Ber., 117 (1984) 95.
- 320. R.J. Hoxmeier, B. Deubzer and H.D. Kaesz, J. Amer. Chem. Soc., 93 (1971) 536; R.J. Hoxmeier, C.B. Knobler and H.D. Kaesz, Inorg. Chem., 18 (1979) 3462.
- 321. Ch. P. Casey, R.M. Bullock, W.C. Fultz and A.L. Rheingold, Organometallics, 1 (1982) 1591.
- B.P. Biryukov, Yu. T. Struchkov, K.N. Anisimov, N.E. Kolobova and 322. A.S. Beschasnov, Chem. Commun., (1968) 667. A.D. Horton, M.Y. Mays and P.R. Raithby, Chem. Commun., (1985) 247.
- 323.
- T. Adatia, K. Henrick, A.D. Horton, M.J. Mays and M. McPartlin, Chem. Commun., (1986) 1206. 324.
- W.B. Rybakov, A.I. Tursina. L.A. Aslanov, S.A. Yeremin, H. 325. Schrauber and L. Kutshabsky, Z. Anorg. Allg. Chem., 487 (1982) 217.
- N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 279 (1985) 419. 326.

- 327. Ch. P. Casey, C.R. Cyr, R.L. Anderson and D.F. Marten, J. Amer. Chem. Soc., 97 (1975) 3053.
- N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu. T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 157 (1978) 431. 328.
- O. Orama, U. Schubert, F.R. Kreissland, E.O. Fischer, Z. Naturforsch, Teil B, 35 (1980) 82. 329.
- 330.
- S.M. Gadol and R.E. Davis, Organometallics, 1 (1982) 1607. N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, G.G. Aleksandrov and Yu. 331. T. Struchkov, J. Organomet. Chem., 228 (1982) 265.
- 332. J. Keijsjer, P. Grimberg, G. van Koten, K. Vrieze, B. Kojic-Prodic and A.L. Spek, Organometallics, 4 (1985) 438.
- 333. V.G. Andrianov, Yu. T. Struchkov, N.E. Kolobova, A.B. Antonova and N.S. Obesyuk, J. Organomet. Chem., 122 (1976) C33.
- P.J. Hansen, R.A. Jacobson, J. Organomet. Chem., 6 (1966) 389. 334.
- 335. T.G. Southern, U. Oehmichen, J.Y. Le Marouille, H. Le Bozec, D. Grandjean and P.H. Dixneuf, Inorg. Chem., 19 (1980) 2976.
- 336. S.S. Crawford, C.B. Knobler and H.D.Kaesz, Inorg. Chem., 16 (1977) 3201.
- A.S. Batsanov and Yu. T. Struchkov, J. Organomet. Chem., 266 337. (1984) 295.
- 338. W.P. Weiner, F.J. Hollander and R.G. Bergman, J. Amer. Chem. Soc., 106 (1984) 7462.
- 339. F.W.B. Einstein, P. Manning, L.K. Peterson and K.G. Tyers, Inorg. Chim. Acta, 111 (1986) L49.
- M.L. Aldridge, M. Green, J.A.K. Howard, G.N. Pain, S.J. Porter, 340. F.G.A. Stone and P. Woodward, J. Chem. Soc., Dalton Trans., (1982) 1333.
- 341. H. Werner, F.J. Garcia Alonso, H. Otto, K. Peters and H.G. von Schnering, J. Organomet. Chem., 289 (1985) C5.
- 342. J.R. Blickensderfer, C.B. Knobler and H.O. Kaesz, J. Amer. Chem. Soc., 97 (1975) 2686.
- 343. M. Berry, J. Martin-Gil, J.A.K. Howard and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1980) 1625.
- 344. J.C. Jeffery, R. Navarro, H. Razay and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1981) 2471.
- 345. J.A.K. Howard, J.C. Jeffery, M. Laguna, R. Navarro and F.G.A. Stone, Chem. Commun., (1979) 1170, J. Chem. Soc., Dalton Trans., (1981) 751.
- 346. J.C. Jeffery, H. Razay and F.G.A. Stone, Chem. Commun., (1981) 243; J. Chem. Soc., Dalton Trans., (1982) 1733.
- T.V. Ashworth, M. Berry, J.A.K. Howard, M. Laguna and F.G.A. 347. Stone, Chem. Commun., (1979) 43; M. Berry, J.A.K. Howard and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1980) 1601. R.E. Cramer, K.T. Higa and J.W. Gilje, J. Amer. Chem. Soc., 106
- 348. (1984) 7245.
- D.L. Grimmett, J.A. Labinger, J.N. Bonfiglio, S.T. Masuo, E. Shearin 349. and J.S. Miller, Organometallics, 2 (1983) 1325.
- S. Baral, J.A. Labinger, W.R. Scheidt and F.J. Timmers, 350. J. Organomet. Chem., 215 (1981) C53.
- A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, V.T. Kalinnikov, 351. G.G. Aleksandrov and Yu. T. Struchkov, J. Organomet. Chem., 216 (1981) 211.
- R. Lak De, J. Von Seyerl and G. Huttner, J. Organomet. Chem., 178 352. (1979) 319.
- 353. L.M. Cirjak, J.S. Huang, Z.H. Zhu and L.F. Dahl, J. Amer. Chem.
- Soc., 102 (1980) 6623. G.A. Carriedo, V. Riera, D. Miguel, A.M. Manotti Lanfredi and A. Tiripicchio, J. Organomet. Chem., 272 (1984) C17. 354.
- 355. E.N. Jacobsen and R.G. Bergman, J. Amer. Chem. Soc., 107 (1985) 2023.

- G. Huttner, G. Mohr and A. Frank, Z. Naturforsch., Teil B, 31 356.
- (1976) 1161; Angew. Chem. Int. Ed. Engl. 15 (1976) 682. 357.
- J. Schneider, L. Zsolnai and G. Huttner, Cryst. Struct. Comm., 11 (1982) 943.
- 358. J. Schneider, L. Zsolnai and G. Huttner, Cryst. Struct. Comm., 11 (1982) 1233.
- 359. W.A. Herrmann, E. Voss, E. Guggolz and M.L. Ziegler, J. Organomet. Chem., 284 (1985) 47.
- 360. W. Gäde and E. Weiss, J. Organomet. Chem., 213 (1981) 451.
- K. Triplett and M.D. Curtis, J. Amer. Chem. Soc., 97 (1975) 5747. 361. 362. R.J. Daroda, G. Wilkinson, M.B. Hursthouse, K.M. Abdul Malik and
- M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1980) 2315. F.J. Timmers, W.R. Scheidt, J.A. Labinger and S. Baral,
- 363.
- J. Organomet. Chem., 240 (1982) 153.
- 364. W.A. Herrmann, J. Weichmann, R. Serrano, K. Blechschmitt, H. Pfisterer and M.L. Ziegler, Angew. Chem. Int. Ed. Engl., 22 (1983) 314.
- G. Huttner, B. Sigwarth, J. von Seyerl and L. Zsolnai, Chem. Ber., 365. 115 (1982) 2035.
- L.G. Kuzmina, A.G. Ginzburg, Yu. T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 253 (1983) 329. 366.
- 367. A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, Yu. V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, G.G. Aleksandrov and Yu. T. Struchkov, J. Organomet. Chem., 214 (1981) 351.
- 368. E. Lindner, S. Hoehne and K.W. Rodatz, Z. Naturforsch, Teil B, 34 (1979) 520.
- 369. H. Lang, L. Zsolnai and G. Huttner, Angew. Chem. Int. Ed. Engl. 22 (1983) 976.
- 370. J.M. Boncella and R.A. Andersen, Inorg. Chem., 23 (1984) 432.
- 371. C.M. Lukehart, G.P. Torrence and J.V. Zeile, J. Amer. Chem. Soc., 97 (1975) 6903.
- 372. J. von Seyerl, L. Wohlfahrt and G. Huttner, Chem. Ber., 113 (1980) 2868.
- 373. M. Herberhold, D. Reiner and D. Neugebauer, Angew. Chem. Int. Ed. Engl., 22 (1983) 59.
- 374. A.B. Antonova, S.V. Kovalenko, E.D. Korniyets, A.A. Johansson, Yu. T. Struchkov and A.I. Yanovsky, J. Organomet. Chem., 267 (1984) 299.
- 375. A.A. Paynskii, I.L. Eremenko, G. Sh. Gasanov, Yu. T. Struchkov and V.E. Shklover, J. Organomet. Chem., 276 (1984) 349.
- 376. I.L. Eremenko, A.A. Pasynskii, G. Sh. Gasanov, B. Orazsakhatov, Yu. T. Struchkov and V.E. Shklover, J. Organomet. Chem., 275 (1984) 183.
- 377. J. von Seyerl and G. Huttner, J. Organomet. Chem., 193 (1980) 207.
- W. Gäde and E. Weiss, Angew. Chem. Int. Ed. Engl., 20 (1981) 803. 378.
- 379. D. Melzer and E. Weiss, J. Organomet. Chem., 255 (1983) 335.
- 380. W.A. Herrmann, Ch. Hecht, M.L. Ziegler and Th. Zahn, J. Organomet. Chem., 273 (1984) 323.
- 381. M. Melnik and J.E. van Lier, Coord. Chem. Rev., 77 (1987) 275.
- 382. C.E. Holloway and M. Melnik, J. Organomet. Chem. Lib., 20 249-342 (1988).
- 383. C.E. Holloway and M. Melnik, in preparation.